
CMRR Report Number 34, Summer 2010

FASTMAG: FAST MICROMAGNETIC SOLVER FOR
LARGE-SCALE SIMULATIONS

R. Chang, S. Li, M.V. Lubarda, B. Livshitz, and V. Lomakin

University of California, San Diego

1 Introduction

Micromagnetic solvers have a high predictive power and are important for our ability to analyze and

design magnetic components. Simulating a complex structure may be very time-consuming and the

development of fast computational methods for micromagnetics is of high importance. Modern and

future computational tools should rely on parallelization to allow for continuing scaling of the

computational power. Conventionally, micromagnetic solvers have been parallelized on shared

memory computers or CPU clusters but such implementations have limitations. Shared memory

computers are limited by a relatively small number of available cores. Large clusters are expensive,

consume much power, are available only as specialized facilities, and may often suffer from

communication speed limitations. New massively parallel Graphics Processing Unit (GPU) computer

architectures have emerged, offering massive parallelization at a very low cost.

Earlier our group has demonstrated efficient GPU implementations of finite difference micromagnetic

solvers [1]. Here, we present a new fast micromagnetic solver, referred to as FastMag, which can

handle problems of a small or very large size with a high speed. The method discretizes the

computational domain into tetrahedral elements so that it is highly flexible for any geometries. FastMag

allows handling any uniform or non-uniform geometries, does not require solving a linear system of

equations, and requires very little memory. The results demonstrate a high efficiency and flexibility of

the code. FastMag and its extensions can be used to micromagnetically model general magnetic

structures, such as, a uniform and non-uniform arrays of generally shapes magnetic dots, magnetic

wires, recording heads, magnetic media.

2 Problem formulation

Micromagnetic phenomena are governed by the Landau-Lifshitz-Gilbert (LLG) equation, which can be

written in the following normalized form

, (1)

where m = M/Ms is the magnetization unit vector with the saturation magnetization Ms, t is time, y is the

gyromagnetic ratio, and α is the damping constant.

The effective magnetic field Heff in Eq. (1) is comprised of the external field Hext, anisotropy field Hani,

exchange field Hexc, and magnetostatic field Hms:

 (2)

Here, the anisotropy field is assumed to be uniaxial, lex=A1/2/Ms is the exchange length with the exchange

constant A. The external field is a prescribed function of space and time. The magnetostatic field is given as

a volume integral over the effective volume charges ∇′ ⋅ m and surface integral over the effective surface

charges –m · n′ defined with respect to the normal to the computational domain surface n′.

The magnetic structure of interest is discretized into a mesh of tetrahedrons and standard scalar linear basis

functions are used to expand the magnetization. Let the total number of tetrahedral elements be NT, the total

number of nodes (i.e. tetrahedron’s vertices) be NV, and the number of surface nodes be Ns . Assume that

the connectivity matrix e(i) is available that defines the elements e in terms of nodes i. Assume also that a

connectivity matrix i(e) is available that relates the nodes to the elements containing the nodes. Such

matrices can be given by meshing software. The magnetization is given at the nodes and it can be repre-

sented in space as

. (3)

[]eff eff2 ()
1t

γ α
α

∂ −
= × + × ×

∂ +
m m H m m H

2 2

eff ext ani exc ms

()

'

(2)

.

ani

exc s e

S
ms

K

x K

V S

M dV

M l H

dS
H

= + + +

⎛ ⎞′ ′∇ ⋅ ⋅′= −∇ +∇⎜ ⎟⎜ ⎟′ ′− −

∇

⎝

=

=

⎠

⋅

∫∫∫ ∫∫

H k m k

H m

H H H H H

m m n
r r r r

H

4

'() '()
' 1 ' 1 1

VTN

e i e i j j
e i j

N

N ϕ′ ′
= = =

=≅ ∑∑ ∑m m m

A discrete form of LLG is obtained by substituting the expansion in Eq. (3) into Eq. (1) and computing the

resulting effective field at the nodes. A critical component of solving the LLG equation is the evaluation of

the effective field.

3 Calculations of the effective field

3.1 Local fields: Anisotropy, external, and exchange

Computing the external and anisotropy fields is straightforward. These fields are directly sampled at the

nodes. The exchange field is decomposed into its three Cartesian components, tested by the same functions

as the basis functions, and averaged from the elements to nodes via the box method [2].

3.2 Magnetostatic field

The magnetostatic field is evaluated via superposition in a four-step procedure. First, equivalent magnetic

charge densities are computed at the elements and nodes. Second, magnetic potentials at NV nodes from

collocated NV source points are expressed as a dense matrix-vector product (MVP) problem, which is

sparsified and evaluated via NGIM [1]. Third, the nodal potentials are corrected with analytical calculations

of near-field interactions. Fourth, the magnetostatic field is obtained as the gradient of the scalar potential.

All integrals are evaluated numerically using a quadrature rule and singularity extraction procedure similar

to the approaches used in the framework on electromagnetic integral equations [3]. We choose a 4-point

rule in which the quadrature points coincide with the nodes (vertices) defining the elements, which results

in a high accuracy and in a very small number of operations compared to any conventional quadrature

rules with nodes defined inside the elements. The entire procedure can be summarized in the following

matrix form

. (4)

Here, [Q] is an NV × 3NV matrix that projects the nodal magnetizations to the nodal point charges, whereas

[Z0] is an NV × NV matrix that describes the local correction (singularity extractions) in the potential. The

matrix [Q]T is the transpose of [Q] and it serves to map the nodal potentials to the nodal magnetostatic

fields. The matrices [Q] , [Q]T , and [Z0] are sparse and have non-vanishing entries only for nodes that

share the same tetrahedral element. The matrix [Zl] is dense and it represents a mapping from NV scalar

charges to NV scalar observers. This matrix represents the (long-range interaction) integral kernel in a

canonical (point-to-point) form.

()0[][] [] [] [] [][]T
m ls = ≅ +m Z Z QH Z Q m

The representation in Eq. (4) is efficient and flexible in that it decouples the basis function representation

from the integral kernel representation of the problem. In terms of the code developments it allows easily

switching between different types of basis and testing functions or different types of the integral kernel.

The matrix [Zl] is dense and the associated matrix-vector product has a high computational cost if

evaluated as a direct summation. We use the non-uniform grid interpolation method (NGIM) to evaluate

this product rapidly in O(Nv) operations [4-6].

The approaches discussed above are implemented on GPUs using NVIDIA CUDA programming

environment [7]. A single GPU contains several hundred of stream processors, e.g. a recently released

NVIDIA GeForce GTX 480 has 480 cores (double the number compared to the previous generation).

Features of the GPU architecture have to be carefully taken into account when implementing the methods

described above [5]. In particular, the NGIM implementations on a CPU and a GPU have significant

differences.

4 Results

In this section we present results describing the performance of our method. We validated the accuracy of

the code against μMAG standard problem 3 and 4. To demonstrate the code performance we present

results of simulations of bit patterned media (BPM). All simulations were run on a simple desktop

computer with Intel Core i7 2.66GHz CPU with 12 GB RAM and NVIDIA GeForce GTX 480 GPU (the

total cost of the computer was about $2000 and the total peak power consumption was below 400 W). All

computational times are quoted per time step of the LLG solver. In addition to the computational time

associated with the time stepping, there is a preprocessing (or set-up) time before the simulation starts. The

preprocessing time in all presented simulations varied from 0.5 sec to 20 sec.

We ran simulations of BPM for different array sizes. In all models, each island was cubic, with edge

length l =12 nm. To mimic materials and patterning fluctuations, we introduced distributions in island

anisotropy and position. The mean island anisotropy field and interbit spacing were 25 kOe and 12 nm,

respectively. The random variations for the two quantities were 15% and 10%, respectively. In each of

the following simulations all islands were initially oriented up. An external field of strength Ha = 0.91 HK

was applied downward at 10 to the z-axis over the entire BPM array. Here, Ha corresponded to the

switching field of a single island having the mean anisotropy field. Due to the introduced distributions and

magnetostatic interactions not all islands reverse under the applied field. The resulting bit-pattern for a N ×

N array is shown in Figure 1. The total number of bits, discretization nodes, tetrahedral elements, and the

computational time per iteration are given in Table 1 for the simulated array sizes. It is evident that the

computational time scales linearly with the number of elements. The absolute computational time is small

and the largest problem that can be handled is large, especially taking into account that the simulations

were run on an inexpensive desktop.

It is noted that the simulated problem would be challenging for any existing solvers. For Finite Difference-

based solvers accelerated by FFTs the problem would require fine grids and excessive zero padding,

resulting in reduced computational time and increased memory consumption. For Finite Element/

Boundary Element-based solvers the iterative part could become slowly convergent and the surface

integral part could become slow.

5 Summary

We presented a fast micromagentic solver (FastMag) for solving the Landau-Lifshiz-Gilbert equation. The

solver discretizes the structure into tetrahedral elements and can handle general problems of a small or

very large computational size with a high speed. The solver is implemented on Graphics Processing Units,

which offer massive parallelization at a low cost, converting a simple desktop to a powerful machine

matching performance of a middle range cluster. Results are presented demonstrating the efficiency of the

FastMag solver.

We mention that our current code implements only the magnetostatic part on GPUs, which makes this part

an order faster than the rest of the code. We are currently working on porting the remaining parts of the

code to GPUs, which will reduce the quoted times by over an order. Such implementations are relatively

simple and are anticipated to be completed within a month. We also intend to extend the parallelization to

multi-GPU systems with the set goal of allowing the modeling of structures with a billion degrees of

freedom. This will make possible the analysis and design of truly large-scale and realistic magnetic

components, such as write heads, complex media, coupled oscillators.

[1] S. Li, B. Livshitz, and V. Lomakin, “Graphics processing unit accelerated O(N) micromagnetic
solver,” IEEE Trans. Magn., Vol. 46, pp. 2373-2375, June 2010.

[2] C. W. Gardiner, Handbook of Stochastic Methods. Berlin: Springer, 1985.

[3] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics: IEEE Press,
1997.

[4] A. Boag and B. Livshitz, “Adaptive nonuniform-grid (NG) algorithm for fast capacitance extraction,”
IEEE Trans. Microwave Theory Tech., Vol. 54, pp. 3565-3570, September 2006.

[5] S. Li, B. Livshitz, and V. Lomakin, “Fast evaluation of Helmholtz potential on graphics processing
units (GPUs),” J. Comp. Phys., Vol. 229, pp. 8463-8483, 2010.

[6] B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, “Nonuniform grid algorithm for fast calculation
of magnetostatic interactions in micromagnetics,” Journal of Applied Physics, Vol. 105, pp. 07D541
(3 pp.) April 2009.

[7] NVIDIA, “CUDA Compute Unified Device Architecture Programming Guide, V2.3,” 2009.

Array Size # of bits # of nodes # of elements Time

20x20 400 25,600 64,800 0.14 sec

50x50 2,500 160,000 405,000 0.79 sec

100x100 10,000 640,000 1,620,000 3.06 sec

300x300 90,000 5,760,000 14,580,000 29.6 sec

Table 1. Results of the simulations of the BPM arrays.

Figure 1. Resulting magnetization state pattern of a 100x100 array after reversal.

