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The need for a new computing paradigm 

Present electronic systems used for computing (PCs, workstations and clusters) are based on the 

von Neumann architecture (see Figure 1, left panel) [1]. This computing paradigm employs the 

Turing machine concept [2], [3], and involves a significant amount of information transfer 

between a central processing unit (CPU) and memory, with concomitant limitations in the actual 

execution speed and large amounts of energy used to move data. Therefore, there is currently a 

surge of interest in unconventional computing approaches [4]-[11] that can outperform the 

present von Neumann one [4], [5]. It is clear that such alternatives have to fundamentally depart 

from the existing one in both their computational complexity as well as in the way they handle 

information. For at least a couple of decades, quantum computing [12] has been considered a 

promising such alternative, in view of its intrinsic massive parallelism afforded by the 

superposition principle of quantum mechanics. However, the practical realization of quantum 

computers seems still too far away from the present, and even near-future, technologies.  
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In order to overcome the above mentioned limitations we then need to look for another 

paradigm, and the solid-state emulation of our own brain may provide the solution.  

It is estimated that our brain uses only 10 to 25 Watts per day to perform about 1016 operations 

per second [13]. A supercomputer would require more than 107 times that power to do the same 

amount of operations. And a computer does not even come close to performing such complicated 

tasks as pattern recognition, optimization problems, decision making, etc. we do in the noisy and 

unpredictable environment we live in, and in a massively-parallel way 

How is it then possible that our brain is such a powerful computing machine and yet uses 

so little energy to operate? The answer definitely cannot come only from the number of 

computing elements (about 1011 neurons). Rather, it has to ultimately boil down to the 

fundamentally different way in which computation and information storage are accomplished in 

our nervous system. In fact, unlike our present (super-)computers, calculations in the brain are 

not performed in a CPU that is physically separated from the memory: our brain computes and 

stores information on the same physical location. This way of computing avoids the large 

amount of information transfer to/from the CPU and the memory, saving both energy and time.  

Memcomputing 

Can we realize this paradigm in the solid state? The answer is yes, with the available 

CMOS technology as well as materials or two-terminal systems that can hold information even 

in the absence of an external power source. These systems are resistors, capacitors and inductors 

with memory (memristors, memcapacitors, and meminductors, respectively) [14]. They can also 

be made using CMOS-compatible structures and devices thus offering unprecedented 

opportunities in electronics. In particular, all these standard and non-standard systems and 

devices allow precisely the paradigm we are looking for. We named this paradigm 

memcomputing i.e., computing within memory [4], [5], namely the ability to process information 

directly in/by the memory (see Figure 1, right panel for a schematic of a memcomputing 

architecture). This computing paradigm rests on the solid mathematical foundation of universal 

memcomputing machines [5]. We have indeed recently shown that these machines have the same 

computational power of non-deterministic Turing machines, thus allowing the solution of 

complex problems in polynomial time with polynomial resources.  

 

Figure 1. Von Neumann architecture versus the Memcomputing architecture. 
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Practical realizations 

We have recently proposed a simple and practical realization of memcomputing [6] that 

utilizes easy to build memcapacitive systems [15]. We have named this architecture dynamic 

computing random access memory 

(DCRAM) (see Fig. 2). We have shown 

that DCRAM provides massively-parallel 

and polymorphic digital logic, namely it 

allows for different logic operations with 

the same architecture, by varying only 

the control signals. In addition, by taking 

into account realistic parameters, its 

energy expenditures can be as low as a 

few fJ per operation. DCRAM is also 

fully compatible with CMOS technology, 

can be realized with current fabrication 

facilities, and therefore can really serve 

as an alternative to the present computing 

technology. 

 

Conclusions 

In conclusion, we have introduced the concept of computing with and in memory: 

memcomputing. This new computing paradigm can be realized in the solid state with available 

systems and materials and it is compatible with CMOS technology. It provides a solution to the 

time and energy constraints of traditional von Neumann architectures, while offering a powerful 

new computational tool for solving complex problems that currently require an exponentially 

large number of resources and time.  

This work is a collaborative effort between CMRR and the Physics Departments at UCSD and 

the University of South Carolina. It is partially supported by NSF grant ECCS-1202383.  

 

 

 

  

Figure 2. Scheme of a DCRAM architecture. 
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