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I. INTRODUCTION 

Channel modeling for NAND flash memories is a developing research area with 
applications to better signal processing and coding techniques for flash memories. In [1], 
[2], the empirical cell threshold voltage distributions of multi-level cell (MLC) flash 
memories are modeled using known probability distributions to derive parametric 
channel models. The evaluation of such models is typically based on how well they are 
able to estimate/fit the empirically observed raw bit error rate (RBER) of the flash 
memory.  

Analytical estimation of error-correcting code (ECC) frame error rate (FER) 
performance based on the RBER of a flash memory is hard especially for ECCs such as 
LDPC and Polar codes. Estimating the ECC FER performance for a flash memory 
experimentally using Monte-Carlo simulation techniques is also practically impossible 
due to the extremely large amount of empirical data required to estimate very low frame 
error rates (e.g., 10−10). Hence it is important to develop parametric channel models for 
flash memories that can provide accurate ECC FER performance estimates.  

In this abstract, based on a detailed empirical error analysis of 2Y-nm MLC flash 
memory chips we observe and characterize the overdispersion phenomenon in the 
number of bit errors per ECC frame. Due to this overdispersion phenomenon, we show 
that the RBER of a flash memory chip is not a sufficiently good predictor of the ECC 
FER performance and hence a well studied binary discrete memoryless channel model 
such as the binary asymmetric channel (BAC) model is unable to provide accurate ECC 
FER performance estimation. Hence we propose a binary discrete channel model based 
on the beta-binomial probability distribution (2-BBM channel model) and show using 
simulation results for BCH and LDPC codes, that the 2-BBM channel model provides 
accurate ECC FER performance estimation in MLC flash memories.  

II. EXPERIMENT PROCEDURE 

For error characterization, we perform program/erase (P/E) cycling of the MLC 
flash memory chip under test which consists of repeated application of the erase and 
program operations on the blocks under test. We also perform read operations at intervals 
of every 100 P/E cycles to record the bit error information. We arbitrarily select 4 
contiguous blocks for our experiments and pseudo-random data is used for programming. 



The blocks are P/E cycled up to 10,000 P/E cycles at room temperature in a continuous 
manner with no extra wait time between the erase/program/read operations.  

III. ERROR CHARACTERIZATION 

In this section, we study the empirical bit error characteristics during P/E cycling 
in MLC flash memories. We represent the four charge levels in MLC flash memory as 0, 
1, 2, 3 in the increasing order of charge levels respectively. The corresponding 2-bit 
patterns written to the lower and upper pages are ‘11’, ‘10’, ‘00’ and ‘01’ respectively. 
The two main characteristics studied are the asymmetry of bit errors and the distribution 
of number of bit errors per frame. 

TABLE I 

ERROR CHARACTERIZATION RESULTS 

 
 

Table I(A) shows the frequency of cell errors measured as a percentage of total 
number of cell errors observed across all P/E cycles. We observe that there is asymmetry 
in the number of 0 →  1 and 1 →  0 bit errors in the lower page and, in the upper page; 
the degree of asymmetry is much lower. The number of bit errors per frame parameter is 
the key factor in determining the ECC FER performance. From P/E cycling experiment 
data, we obtain the sample mean and variance statistics of the number of bit errors per 
frame in both lower and upper pages as shown in Table I(B). We observe that the 
variance in the number of bit errors per frame is much larger than the mean i.e., the 
experiment data is overdispersed with respect to a binomial distribution 𝐵𝐵(𝑛𝑛, 𝑝𝑝) typically 
used to model count data whose variance ≈ mean when p is small.  

IV. CHANNEL MODELS FOR MLC FLASH MEMORIES 

Based on the error characterization, we study a per-page BAC model and propose 
a per-page binary discrete channel model based on the beta-binomial probability 
distribution (2-BBM channel model) for MLC flash memories. Using empirical results 
and analysis, we show that the 2-BBM channel model is suitable for ECC FER 
performance estimation.  



 

A. Definitions and Notation  

Let K represent the total number of bit errors in a frame of length N bits. Let Km 
be the total number of bit errors in a frame of N bits which consists of exactly 𝑚𝑚 zeros. 
We denote the number of 0 →  1 and 1 →  0 bit errors in a frame with 𝑚𝑚 zeros by 𝐾𝐾𝑚𝑚

(0) 
and 𝐾𝐾𝑚𝑚

(1) respectively. We have  

 𝐾𝐾𝑚𝑚 =  𝐾𝐾𝑚𝑚
(0) +  𝐾𝐾𝑚𝑚

(1) (1) 

where 𝐾𝐾𝑚𝑚 ∈  {0,1, . . . , 𝑁𝑁} , 𝐾𝐾𝑚𝑚 ∈  {0,1, . . . , 𝑚𝑚}  and 𝐾𝐾𝑚𝑚 ∈  {0,1, . . . , 𝑁𝑁 −  𝑚𝑚} . 𝐾𝐾  can 
also be represented as the sum of the total number of 0 → 1 and 1 → 0 errors as  

 𝐾𝐾 = 𝐾𝐾(0) + 𝐾𝐾(1) (2) 
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where 𝑢𝑢 ∈  {0, 1} and 𝑙𝑙 =  𝑚𝑚 +  (𝑁𝑁 −  2𝑚𝑚)𝑢𝑢.   

B. The 2-Binary Asymmetric Channel (2-BAC) Model  

For the BAC model, 𝐾𝐾𝑚𝑚
(0) and 𝐾𝐾𝑚𝑚

(1) are distributed as per the binomial probability 
distribution and are independent i.e.,  

𝐾𝐾𝑚𝑚
(0) ~ 𝐵𝐵(𝑚𝑚, 𝑝𝑝);     𝐾𝐾𝑚𝑚

(1) ~ 𝐵𝐵(𝑁𝑁 −𝑚𝑚, 𝑞𝑞);    𝐾𝐾𝑚𝑚
(0)  ⊥ 𝐾𝐾𝑚𝑚

(1)  

where 𝑝𝑝 and 𝑞𝑞 denote the probabilities of 0 →  1 and 1 →  0 bit errors respectively and 
𝐵𝐵(𝑚𝑚, 𝑝𝑝), 𝐵𝐵(𝑁𝑁 −  𝑚𝑚, 𝑞𝑞) denote binomial probability distributions.  

Proposition 1: The mean of 𝐾𝐾 (𝐸𝐸[𝐾𝐾]) and the variance of 𝐾𝐾 (𝑉𝑉𝑉𝑉𝑉𝑉[𝐾𝐾]) for a BAC model 
are given by   

 𝐸𝐸[𝐾𝐾] =  
𝑁𝑁
2

 (𝑝𝑝 + 𝑞𝑞) (4) 

 𝑉𝑉𝑉𝑉𝑉𝑉[𝐾𝐾] =  
𝑁𝑁
2

((𝑝𝑝 + 𝑞𝑞) − 𝑝𝑝𝑝𝑝 − 
1
2

(𝑝𝑝2 + 𝑞𝑞2)) (5) 

The parameters of the BAC model p and q are estimated as the average 0 →  1 and 1 →
 0 bit error rates obtained empirically.  From proposition 1, 𝑉𝑉𝑉𝑉𝑉𝑉[𝐾𝐾]  <  𝐸𝐸[𝐾𝐾] and for 
small values of 𝑝𝑝  and 𝑞𝑞 ,  𝑉𝑉𝑉𝑉𝑉𝑉[𝐾𝐾]  ≈  𝐸𝐸[𝐾𝐾] . Thus the 2-BAC model of a MLC flash 



memory does not fit the empirical observations in Table. I(B) and hence is unsuitable for 
accurate ECC FER performance estimation. However, note that the 2-BAC model does 
provide an accurate estimate of the average RBER which is given by 𝐸𝐸[𝐾𝐾]

𝑁𝑁
. This shows 

that the ability to accurately estimate/predict the average RBER is not the sole criterion 
for a good MLC flash memory channel model.  

C. The 2-Beta-Binomial (2-BBM) Channel Model  

From the empirical error characterization results, we observed that the mean and 
the variance statistics of the number of bit errors per frame indicate overdispersion with 
respect to a binomial distribution. The beta-binomial probability distribution was first 
proposed in [3] as the probability distribution of counts resulting from a binomial 
distribution if the probability of success varies according to the beta distribution between 
sets of trials. Using empirical data, it was also shown in [3] that the beta-binomial 
probability distribution is suitable for modeling overdispersed count data. For the beta-
binomial (BBM) channel model corresponding to the lower/upper page, we model the 
variables 𝐾𝐾𝑚𝑚

(0) and 𝐾𝐾𝑚𝑚
(1)

 as being distributed according to the beta-binomial distribution 
i.e.,  

𝑝𝑝 ~ 𝑓𝑓(𝑎𝑎, 𝑏𝑏);   𝐾𝐾𝑚𝑚
(0) | 𝑝𝑝 ~ 𝐵𝐵(𝑚𝑚, 𝑝𝑝);  𝐾𝐾𝑚𝑚

(0) ~ 𝐵𝐵𝑓𝑓(𝑚𝑚, 𝑎𝑎, 𝑏𝑏) 

𝑞𝑞 ~ 𝑓𝑓(𝑐𝑐, 𝑑𝑑);   𝐾𝐾𝑚𝑚
(1) | 𝑞𝑞 ~ 𝐵𝐵(𝑁𝑁 −𝑚𝑚, 𝑞𝑞);  𝐾𝐾𝑚𝑚

(1) ~ 𝐵𝐵𝑓𝑓(𝑁𝑁 −𝑚𝑚, 𝑐𝑐, 𝑑𝑑) 

where 𝑓𝑓(𝑎𝑎, 𝑏𝑏), 𝐵𝐵(𝑚𝑚, 𝑝𝑝) and 𝐵𝐵𝑓𝑓(𝑚𝑚, 𝑎𝑎, 𝑏𝑏) denote the beta, binomial and the beta-binomial 
probability distributions respectively (similarly 𝑓𝑓(𝑐𝑐, 𝑑𝑑),  𝐵𝐵(𝑁𝑁 − 𝑚𝑚, 𝑞𝑞)  and              
𝐵𝐵𝑓𝑓(𝑁𝑁 − 𝑚𝑚, 𝑐𝑐, 𝑑𝑑) ). 𝑋𝑋 | 𝑌𝑌  denotes “𝑋𝑋  given 𝑌𝑌 ”. The parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑  of the BBM 
channel model are estimated from the sample moments of 𝐾𝐾(0)  and 𝐾𝐾(1) using the 
method of moments [3]. From empirical data, we obtain the sample mean and second 
moment estimates of 𝐾𝐾(0)  and 𝐾𝐾(1) . Let 𝜇𝜇1, 𝜇𝜇2  represent the first and second moment 
estimates of 𝐾𝐾(0)  (similarly 𝜇𝜇3, 𝜇𝜇4 for 𝐾𝐾(1)). The parameter estimates are given by  

 
𝑎𝑎� =  

𝜇𝜇12(𝑁𝑁 + 1) − 2𝜇𝜇1𝜇𝜇2
𝑁𝑁(𝜇𝜇2 − 𝜇𝜇1) − 𝜇𝜇12(𝑁𝑁 − 1)

;    𝑏𝑏� = 𝑎𝑎�(
𝑁𝑁

2𝜇𝜇1
− 1) 

(6) 

 
𝑐̂𝑐 =  

𝜇𝜇32(𝑁𝑁 + 1) − 2𝜇𝜇3𝜇𝜇4
𝑁𝑁(𝜇𝜇4 − 𝜇𝜇3) − 𝜇𝜇32(𝑁𝑁 − 1)

;    𝑑̂𝑑 = 𝑐̂𝑐(
𝑁𝑁

2𝜇𝜇3
− 1) 

(7) 

 

D. ECC FER Performance Estimation Results  

Fig. 1 shows the FER performance of a BCH code and a regular quasi-cyclic 
LDPC (QC-LDPC) code with 𝑑𝑑𝑐𝑐 =  64 and 𝑑𝑑𝑣𝑣 =  4 where 𝑑𝑑𝑐𝑐 and 𝑑𝑑𝑣𝑣 refer to the check 



node and variable node degrees respectively in the parity check matrix. For both the 
ECCs considered, we observe that the 2-BAC model provides an optimistic estimate of 
the FER performance when compared to the empirically observed FER performance. 
This is mainly due to the inability of the 2-BAC model to capture the high variance in the 
number of bit errors per frame observed empirically. From these results it is clear that the 
proposed 2-BBM channel model is able to accurately describe the nature of the number 
of bit errors per frame in MLC flash memories and hence provides accurate estimates of 
the ECC FER performance.  

 

Figure 1: Comparison of FER performance of a (N = 8191, k = 7683, t = 39) BCH code 
and a   (N = 8192, k = 7683) regular QC-LDPC code using empirical error data and error 
data from simulation using the 2-BAC and the 2-BBM channel models.  
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