A 7.8MB/s 64Gb 4-Bit/Cell NAND Flash Memory on 43nm CMOS Technology

Cuong Trinh1, Noboru Shibata2, Takeshi Nakano2, Mikio Ogawa2, Jumpei Sato2, Yoshikazu Takeyama2, Katsuaki Isobe2, Binh Le1, Farookh Moogat1, Nima Mokhlesi1, Kenji Kozakai1, Patrick Hong1, Teruhiko Kamei1, Kiyoaki Iwasa2, Jiyun Nakai2, Takahiro Shimizu2, Mitsuaki Honma2, Shintaro Sakai2, Toshimasa Kawai2, Satoru Hoshi2, Jonghak Yuh1, Cynthia Hsu1, Taiyuan Tseng1, Jason Li1, Jayson Hu1, Martin Liu1, Shahzad Khalid1, Jiaqi Chen1, Mitsuyuki Watanabe1, Hungszu Lin1, Jeff Yang1, Keith McKay1, Khanh Nguyen1, Trung Pham1, Yasuyuki Matsuda2, Keiichi Nakamura2, Kazunori Kanebako2, Susumu Yoshikawa2, Wataru Igarashi2, Atsushi Inoue2, Toshiyuki Takahashi2, Yukio Komatsu2, Chiyumi Suzuki2, Kazuhisa Kanazawa2, Masaaki Higashitani1, Sam Lee1, Takashi Murai1, Ken Nguyen1, James Lan1, Sharon Huynh1, Mark Murin1, Mark Shlick1, Menahem Lasser1, Raul Cernea1, Mehrdad Mofidi1, Klaus Schuegraf1, Khandker Quader1

1SanDisk Corp., Milpitas, California, USA
2Toshiba Corp., Yokohama, Kanagawa, Japan
Outline

- Introduction
- 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion
Outline

- Introduction
 - 4-Bit/Cell (16LC) Distribution
 - Performance Features
 - Silicon Results
 - Summary of Key Features
 - Conclusion
Memory Density Trend

- Memory density previously reported
- 64Gb X4 provides a 2 times density improvement

Note: D# = # bits per cell
Comparison with Previous Works

<table>
<thead>
<tr>
<th></th>
<th>43nm 16Gb D2</th>
<th>43nm 64Gb X4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K. Kanda, et al., ISSCC ‘08)</td>
<td>(This Work)</td>
</tr>
<tr>
<td>Chip Size</td>
<td>120 mm²</td>
<td>244.5 mm²</td>
</tr>
<tr>
<td>Density</td>
<td>133 Mb/mm²</td>
<td>262 Mb/mm²</td>
</tr>
<tr>
<td>Architecture</td>
<td>8 Gb / plane</td>
<td>32 Gb / plane</td>
</tr>
<tr>
<td>MLC</td>
<td>4LC</td>
<td>16LC</td>
</tr>
<tr>
<td>Program/Sense</td>
<td>ABL</td>
<td>ABL</td>
</tr>
</tbody>
</table>

64Gb is highest capacity single die reported!
Comparison with 3Xnm Products

<table>
<thead>
<tr>
<th>Device</th>
<th>32Gb D2</th>
<th>64Gb X4</th>
<th>32Gb D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>34nm</td>
<td>43nm</td>
<td>32nm</td>
</tr>
<tr>
<td>Die Size</td>
<td>172mm²</td>
<td>244.5mm²</td>
<td>113mm²</td>
</tr>
<tr>
<td>Density Comparison</td>
<td>186Mb/mm²</td>
<td>262Mb/mm²</td>
<td>283Mb/mm²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R. W. Zeng, et al., ISSCC '09</th>
<th>This Work</th>
<th>T. Futatsuyama, et al., ISSCC '09</th>
</tr>
</thead>
</table>
X4 Benefits

- X4 enables highest capacity
 - Expand in capacity where D2 and D3 cannot

- 2 times improvement in memory density (over previously reported works)

- Compared to published 32nm generation of technology, 43nm 64Gb X4 enables:
 - Much lower cost than 34nm D2
 - Comparable in cost effectiveness with 32nm D3
4-Bit/Cell Considerations

- More ECC parity bits to support strong ECC requirements
- Four sets of data latches
- Design challenges - 16 levels of distribution
 - Precise control of voltages and timings
 - Performance – Many levels to verify
Project Objectives

- High density in 4-bit/cell (16LC)
 - Very narrow distribution

- Performance target of 8MB/s, comparable to other MLCs Designs
 - 8MB/s D3 reported at 2008 ISSCC (Y. Li, et al., ISSCC ’08)
 - 9MB/s D2 reported at 2009 ISSCC (R. Zeng, et al., ISSCC ’09)
Outline

- Introduction
- 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion
Distribution Requirements

- For similar Vt window, 16LC requires much tighter distribution.

![Diagram showing Vt window distribution for 4LC and 16LC](image)

- Vt window cannot be increased too much due to device reliability considerations (Program Disturb, Read Disturb, …)

- Major obstacle in obtaining tight distribution is cell-to-cell coupling (CCC).
Cell-to-Cell Coupling

- Three components of CCC:
 - Diagonal
 - WL – WL
 - BL – BL

- CCC greatly affects final distribution width.

- With technology scaling, all 3 components of CCC increase.
Cell-to-Cell Coupling Trend

- With technology scaling, CCC increases dramatically
- To obtain tight distribution, need to overcome CCC
Issue with CCC

WL_{n+3} \quad WL_{n+2} \quad WL_{n+1} \quad WL_{n}

WL_{n} Distribution

Erase

WL_{n} Distribution (after WL_{n+1} Programming)

Erase
2-Pass Programming

- Previous Method: 2-Pass Programming
 - First pass programs roughly to lower level
 - Second pass programs to final level
 - Vth movement of second pass is small, minimizing CCC on its neighbors

N. Shibata, et al., Symp. VLSI Circuit '07
2-Pass Programming

Vth distribution of WL\textsubscript{n}

(1)

V\textsubscript{E} V\textsubscript{Low}

(2)

V\textsubscript{E} V\textsubscript{Low} V\textsubscript{Tar}

(3)

V\textsubscript{E} V\textsubscript{Low} V\textsubscript{Tar}

Vth distribution of WL\textsubscript{n+1}

(2)

V\textsubscript{E} V\textsubscript{Low}

(3)

V\textsubscript{E} V\textsubscript{Low} V\textsubscript{Tar}

(4)

V\textsubscript{E} V\textsubscript{Low} V\textsubscript{Tar}
2-Pass Programming

- 2-Pass is not enough to handle high CCC of technology scaling
 - CCC₁ increases
 - Needs to lower \(V_{\text{Low}} \)
 - Lower \(V_{\text{Low}} \) increases \(D_{\text{V}_2} \)
 - \(\text{CCC}_{\text{Final}} \propto D_{\text{V}_2} \)
 - Wider distribution

- Improved algorithm to achieve tight distribution
 - Three-Step Programming (TSP)
Three-Step Programming (TSP)

- Each WL programming consists of 3 steps:
 - Step 1 – Program to 4 levels (V_{Low1})
 - Step 2 – Program roughly to 16 levels (V_{Low2})
 - Step 3 – Program to final 16 levels (V_{Tar})
TSP – The Concept

Step 1: Program to V_{Low1}

Distribution after Step 1 of neighbor cells

Step 2: Program to V_{Low2}

Distribution after Step 2 of neighbor cells

Step 3: Program to V_{Tar}

Distribution after Step 3 of neighbor cells
TSP – Programming Sequence

Vth distribution of WLn

Step 1: Program to 4 levels (V_{Low1})

Distribution after Step 1 of neighbors

Step 2: Program to 16 levels (V_{Low2})

Distribution after Step 2 of neighbors

Step 3: Program 16 levels to V_{Tar}

Distribution after Step 3 of neighbors
TSP – Benefits

- Additional step minimizes the effect of CCC
 - Cell Vt movement during each step is small, reducing CCC of its neighbors.
 - V_{Low2} of 2nd step can be closer to V_{Tar} of 3rd step.
 - Cell Vt movement during last step is minimal and has negligible effect on its neighbors.
 - TSP reduces CCC effect to ~ 5%.

- Allows bigger programming step size during 1st & 2nd steps
 - Minimal impact on programming time
Outline

- Introduction
- 4-Bit/Cell (16LC) Distribution
- **Performance Features**
- Silicon Results
- Summary of Key Features
- Conclusion
Performance Techniques

- Performance enhancement techniques:
 - **All BitLine (ABL) architecture**
 - Optimization of Verification Matrix
 - Optimization of internal timing and operations
 - Cell Source noise tracking
 - WL noise cancellation

- ABL is the main reason for achieving our performance objective.

- **Sequential Sense Concept (SSC)** further improves performance of both read and verify operations.
Performance Comparison

This Work
43nm

7.8 MB/s

ABL
8KB Page
Sequential Sense
Optimization

Verification Matrix
Internal Timing & Operations

12.6 X

70nm 16Gb X4
N. Shibata, et al., Symp. VLSI Circuit ‘07

0.62 MB/s
ABL Architecture

- Conventional Even / Odd architecture
 - One Sense Amplifier handling two bitlines
 - Alternating bitlines shielded during sensing

- ABL architecture
 - Simultaneous Read and Program of all bitlines
 - No shielding necessary

(R. Cernea, et al., ISSCC ’08)
Sequential Sense Concept (SSC)

- Fixed sensing order from start to final levels
- For each read and verify sequence, charging of un-selected WLs and Select gates is done only once
 - WL stabilization time is minimized
- Same sequence is used for both read and verify
 - Matching of read and verify conditions
- Less Source Line (SL) current (see example next page)
Example: Sensing level 8 (WL potential = Level 8)

- Conventional sensing, cells of levels 0 – 7 are on
- With SSC, only cells of level 7 are on
- SSC generates less SL current
 » Smaller SL bounce
 » Less SL stabilization time
 » Less current consumption
Sequential Sense Concept (SSC)

- After sensing of level 8 is complete, page (0) data is available for shifting out.
- After sensing of level C, page (1) data is available; after level E, page (2) data is ready.
- With SSC, data can be shifted out in parallel with internal sensing, supporting cache operation.
Outline

- Introduction
- 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion
Measured Distribution of 16 LC

Tight distribution is achieved with TSP
Performance

- Total Tprog for 3 steps = 8.41ms
- 7.8MB/s with 2-plane (16KB x 4) programming
- ABL is the main contributor to high performance
Outline

- Introduction
- 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion
Summary of Key Features

- 43nm CMOS Flash technology
- 64Gb, 4-bit/cell
- ABL with 2-sided SA
- Organization
 - Dual Plane array
 - 32Gb / plane
 - 2K blocks / plane
 - Block size = 16Mb (4M cells)
 - 66 NAND string
 - 8KB page size
Summary of Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>ABL</td>
</tr>
<tr>
<td>Write Throughput</td>
<td>7.8MB/s</td>
</tr>
<tr>
<td>Tprog (per page)</td>
<td>2.1ms</td>
</tr>
<tr>
<td>Tread (per page)</td>
<td>60us</td>
</tr>
<tr>
<td>Terase</td>
<td>3ms</td>
</tr>
<tr>
<td>Burst Cycle Time</td>
<td>25ns</td>
</tr>
<tr>
<td>Power Supply</td>
<td>2.7 to 3.6V</td>
</tr>
<tr>
<td>Technology</td>
<td>3-Metal 43nm</td>
</tr>
<tr>
<td>Die Size</td>
<td>244.45 mm²</td>
</tr>
</tbody>
</table>
Conclusion

- A high performance 64Gb 4-bit/cell is reported.
 - Developed on 43nm CMOS technology
 - Highest capacity ever reported

- 16LC tight distribution is achieved with TSP.

- Able to achieve performance on par with other MLC designs by leveraging:
 - ABL architecture
 - Sequential Sense Concept (SSC)
 - Extensive optimization of verification matrix and internal operations
Acknowledgments

The authors thank E. Harari1, S. Mehrotra1, Y. Cedar1, A. Koike1, Y. Fong1, Y. Li1, F. Pan1, C. Hook1, N. Thein1, B. Raghunathan1, S. Lobana1, L. Tu1, H. Wakita1, M. Horiike1, C. Chen1, T. Pham1, L. Rowland1, M. Momodomi2, H. Nakai2, S. Mori2, T. Tanaka2, H. Domae2, T. Kimura2, H. Kadosawa2, and the entire Design, Layout, Device, Evaluation, Test, Process, and x4 System teams for supporting the development of this project.

1SanDisk Corp., Milpitas, California, USA

2Toshiba Corp., Yokohama, Kanagawa, Japan