Job Description
The Recording Media Group at the HGST San Jose Research Center is inviting applications for the position of Postdoctoral Researcher to explore advanced recording media for future information storage. Work will include the use of conventional techniques and the development of novel capabilities to uncover fundamental media properties and how they relate to recording performance of heat assisted recording, bit patterned recording and perpendicular magnetic recording. Candidates experienced in magnetic materials characterization, especially materials growth or micromagnetic modeling, are encouraged to apply. The group is part of a world-class research laboratory located in the foothills of San Jose California where research activities focus on all aspects of information storage. The lab houses more than 100 research employees, most of whom have PhDs in engineering, physics or related disciplines.

Job Responsibilities Will Include:
- Control of nucleation and growth during thin film deposition
- Structural characterization with AFM, SEM and X-ray diffraction.
- Understanding the connection between magnetic properties and structure of films containing FePt and other high anisotropy materials
- Performing research targeted at the discovery of new phenomena and structures for future media.
- Working as part of a team to develop new concepts and test them.
- Generating publications, patents and other intellectual property.

Requirements
- Ph.D. in physics, materials science, electrical engineering or related field.
- Demonstrated ability to perform very high quality original research.
- Strong communication skills and the ability to work in a team environment are also considered important.
- The candidate should have a strong background in several of the following areas: magnetic materials, magnetic reversal phenomena, thin film growth and structural characterization, magnetic characterization, polar Kerr, Vibrating Sample Magnetometry, magnetic recording modeling and simulation, micromagnetic modeling, atomistic or molecular dynamics modeling, x-ray diffraction, SEM, TEM, STM, AFM, MFM, or experimental recording physics.

Contact:
Dr. Bruce Gurney
Bruce.Gurney@hgst.com