A magnetic belt for magnetic printing and the like has a relatively low surface resistivity provided by a conductive surface layer to eliminate unacceptable toner background.
MAGNETIC BELT WITH CONDUCTIVE COATING

BACKGROUND OF THE INVENTION

The present invention relates to magnetic belts for magnetic printers and the like and, more particularly, to a novel magnetic belt having a conductive coating.

Magnetic printing systems, such as is described in U.S. Pat. 3,946,404, issued Mar. 23, 1976 and assigned to the assignee of the present invention, are known which utilize a magnetic recording belt on which a latent magnetic image is formed by a magnetic recording head, for subsequent selective transfer of ink patterns to a permanent media. As described in the aforesaid patent, a magnetic recording tape is comprised of a plastic resin backing layer upon which is fabricated a ferromagnetic magnetic recording layer; the belt is caused to travel past a magnetic recording head array to magnetize the ferromagnetic material of the recording layer in a direction in accordance with the magnetic field established by the head responsive to externally derived electronic signals. Among the properties required of such a magnetic belt, on which latent magnetic images are formed by a magnetic recording head, are the following: the belt must be thin enough to have the necessary degree of flexibility; the oxide coating of the ferromagnetic recording layer must not only have adequate magnetic performance but must also be of a thickness to permit the recording field to properly orient magnetized recording areas therein and then permit the recorded image to attract ink (toner) for subsequent transfer to a permanent medium (e.g. paper); the electrical conductivity of the oxide coating must be high enough to prevent accumulation of electric charge which would attract toner to areas which should be blank, thereby causing undesirable "background" along with the desired recorded image; and the belt must have a relatively high abrasion resistance to resist wear as one side of the belt travels over a supporting surface of the magnetic recording head. Thus, a sufficiently high value of remanence B_r must be achieved in conjunction with a relatively high conductivity, typically expressed as a surface resistivity of less than 10^5 ohms per square. This combination of properties is not easily achieved in known magnetic tapes as the relatively high value of B_r requires a high volume fraction of magnetic oxide, in the ferromagnetic recording layer, which indicates that less volume of the layer is available for any additives utilized to increase conductivity of the recording layer.

A magnetic recording belt having a ferromagnetic recording layer having a relatively high value of B_r, in excess of 1400 gauss, but having a surface resistivity less than 10^5 ohms per square, is desirable for use in magnetic printing applications.

BRIEF DESCRIPTION OF THE INVENTION

In accordance with the invention, a magnetic recording belt for use in a magnetic printer comprises a plastic resin backing layer upon which is fabricated a ferromagnetic recording layer, formed of a material having the necessary magnetic characteristics; the ferromagnetic recording layer is overlayed with a thin, non-magnetic coating having a surface resistivity on the order of 10^6 ohms per square and not otherwise affecting the performance of the magnetic belt, as the wavelengths involved in magnetic printing are on the order of 2–10 milli-inches, whereas audio and video recording utilizes wavelengths typically 10 to 100 times shorter.

In a preferred embodiment of the magnetic belt having a conductive coating, the belt is sprayed with a solution of DAG 154 diluted with isopropanol, whereby, upon evaporation of the isopropanol, a thin coating of resin-supported carbon particles is present upon an exterior belt surface. This conductive coating has the additional advantage of increasing the abrasion resistance of the oxide coating and, subsequently, belt life is increased.

Accordingly, it is an object of the present invention to provide a novel magnetic recording belt having a relatively high surface conductivity, for use in a magnetic printer.

This and other objects of the present invention will become apparent upon consideration of the following detailed description in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a sectional side view of the novel conductivity coated magnetic belt, the means for fabricating the conductive coating thereon, and of the relationship between the belt and recording and inking means; and FIG. 2 is a perspective view of a portion of a magnetic printer using the belt.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIG. 1, a preferred embodiment of our novel conductivity coated magnetic recording belt comprising a backing layer 12 fabricated of a plastic resin material, such as Mylar™ and the like, and having a thickness t_1, preferably on the order of 0.8 milli-inches. A conducting layer 13 may be utilized, in known fashion, upon a surface of backing layer 12, for preventing static charge buildup when the belt is driven by a drive means 14; typically layer 13 has a resistivity on the order of 10^5 ohms-per-square and a thickness of about 0.05 milli-inches. A ferromagnetic recording layer 15, formed of a magnetic oxide and the like, is fabricated upon the remaining surface of supporting layer 12 to a thickness t_2, preferably from about 0.55 milli-inches to about 0.75 milli-inches. The ferromagnetic oxide material of recording layer 15 will advantageously have a remanence (B_r) of value greater than 1400 gauss and a coercive force (H_c) of approximately 300 Oersteds.

In a preferred magnetic printer configuration, magnetic recording means 16 is positioned adjacent the non-oxide-bearing surface of the backing layer 12, and selectively magnetizes regions of recording layer 15, through backing layer 12, in accordance with a desired indicia pattern to be printed. The selectively magnetized portions of layer 15 then attract and retain magnetic toner material, supplied by an inking means 17, upon the surface 15a of the oxide layer furthest from backing layer 12. A typical magnetic recording belt having the above-described backing layer 12 and magnetic recording layer 15, with or without the conductive coating 13 upon the backing layer surface closest to recording means 16, may have adequate thickness and remanent induction characteristics, but will generally have a surface resistivity, at oxide surface 15a closest to inking means 17, of greater than about 10^{10} ohms-per-square, resulting in the formation of unacceptable levels of background pick-up.

Thus, viewing the surface 15a of belt 10, after the belt has traveled in the direction of arrows A (FIG. 2) past
recording means 16 and opposed inking means 17, as
guided and driven by rollers 18, the inked characters,
symbols and other indicia 19a appear against a "stip-
pled" background 19b caused by extraneous magnetic
toner pick-up by the magnetic oxide layer surface 15c.
It is desired that the belt exterior surface 10a, bearing
the toner deposits forming indicia 19c be relatively free
of all background deposits, as at 19b' of FIG. 2.
In accordance with the invention, a layer 20 of a
conductive coating, advantageously comprising carbon
particles supported in a resin, is fabricated upon that
surface 15c of the oxide layer 15 furthest from the sup-
porting layer 12. Conductive coating layer 20 is fab-
ricated to a thickness \(t_5 \), preferably on the order of 0.1
milli-inches; the resulting surface resistivity for such a
conductive coating layer is found to be on the order of
10^6 ohms per square and is sufficient to essentially elimi-
nate the problem of background formation while having
no adverse effect upon the magnetic performance of the
printing belt.

The conductive coating layer is advantageously fab-
ricated by utilizing spraying means 22 to direct a mist 24
of the coating material, diluted with a volatile carrier,
upon ferromagnetic coating layer surface 15a as the belt
moves in the direction of arrow A with respect to the
spraying means, prior to forming an endless loop of the
belt material for installation in the mechanism of FIG. 2
(i.e. means 16 and 17 appear in FIG. 1 for purposes of
explanation only and are not present during fabrication
of conductive coating layer 20). Upon evaporation of
the volatile carrier, the desired conductive coating
layer 20 remains. We have found that a particularly
useful material, containing carbon particles and the
supporting resin, is DAG 154, manufactured by the
Acheson Co., and a volatile carrier for diluting this
material is isopropanol. It should be understood, how-
ever, that other means such as brushing on of a slurry,
for fabricating conductive coating layer 20 may be uti-
lized, as may suitable means for controlling the thick-
ness \(t_5 \) of the conductive coating 20, dependent upon the
desired thickness to be achieved. Similarly, it should be
understood that other conductivity materials may be
utilized to achieve somewhat lesser or greater values of
surface resistivity.

We have also found that the addition of the conduc-
tive coating provides additional abrasion resistance for
the underlying oxide layer 15, to decrease belt wear and
increase belt life when the completed belt is installed and
utilized in the printing apparatus.

By way of illustrative example, a magnetic printing
belt 10 fabricated using a length of Grand Master audio
recording tape (as available from AMPLEX) has resistiv-
ity of greater than 10^{11} ohms-per-square and results in
a background accumulation causing a gray colored back-
ground tinge to appear (as at area 19b) when the toner
is transferred and fixed to a paper medium; the resulting
print is judged difficult to read. We have coated the
same tape with approximately 50 micro-inches of DAG
154 to achieve a surface resistivity of about 10^6 ohms-
per-square and virtually eliminate all background (as at
area 19b'), under the same printing conditions as utilized
for testing the uncoated tape. We have found that there
was no measurable decrease in magnetic printing sig-
nal due to the interposed conductive coating 20 and that
low background accumulation of magnetic toner coinci-
des with surface resistivities of less than approximately
10^6 ohms-per-square.

While the present invention has been described with
respect to one preferred embodiment thereof, many
variations and modifications will now become apparent
to those skilled in the art. It is our intent, therefore, to
not be limited by the specific embodiments disclosed
herein, but only by the scope of the appending claims.

What is claimed is:

1. A magnetic belt for use in a magnetic printer hav-
ing means for magnetically recording information on
said belt, comprising:
 a. a backing layer having opposed first and second sur-
faces, said first surface being positioned adjacent to
 said magnetic recording means when said belt is in
 use;
 b. a recording layer having first and second opposed
 surfaces and fabricated of ferromagnetic material,
 the first surface of said recording layer being in
 abutment with said second surface of said backing
 layer; and
 c. a layer of conductive material, including carbon par-
 ticles supported in a resin, fabricated upon said
 second surface of said recording layer furthest
 from said backing layer and providing said second
 surface of said recording layer with a surface resis-
tivity of less than 10^6 ohms-per-square.

2. A magnetic belt as set forth in claim 1, wherein said
 surface resistivity is on the order of 10^6 ohms-per-square.

3. A magnetic belt as set forth in claim 1, wherein said
 backing layer is formed of a plastic resin material; and
 said recording layer is formed of a ferromagnetic oxide
 material.

4. A magnetic belt as set forth in claim 1, wherein said
 recording layer has a value of remanence in excess of
 1400 gauss.

5. A magnetic belt as set forth in claim 1, wherein said
 conductive coating layer has a thickness on the order of
 0.1 milli-inches.

6. A magnetic belt as set forth in claim 5, wherein said
 recording layer has a thickness from about 0.55 milli-
 inches to about 0.75 milli-inches.

7. A magnetic belt as set forth in claim 1, wherein said
 backing layer has a thickness of about 0.8 milli-inches.