On Joint Modulation and Coding for Intersymbol Interference Channels

Joseph B. Soriaga and Paul H. Siegel
Signal Transmission and Recording (STAR) Group
University of California, San Diego

{jsoriaga,psiegel}@ucsd.edu
http://www-cwc.ucsd.edu/star/

CMRR Review
May 23, 2002
On Joint Modulation and Coding for Intersymbol Interference Channels

Overview

- Information Rates of binary-input, ISI channels.
- Power of output sequences, and the Low-Rate Shannon Limit.
- Concatenations of linear (coset) codes w/ shaping codes.
 - Achievable Rates.
 - Biphase code example.
 - Greedy-search for simple codes.
Information Rates of ISI Channels

- **ISI channel model:**

\[
y_k = \sum_{i=0}^{\nu} h_i x_{k-i} + n_k,
\]

- \(x_k \in \{\pm 1\}, \text{ and } n_k \sim \mathcal{N}(0, \sigma^2) \) and i.i.d.

- **Mutual information rate:**

\[
I(X, Y) = \lim_{n \to \infty} \frac{1}{n} I(X_1^n; Y_1^n)
\]

- Capacity = \(\max I(X, Y) \) over all input distributions.

- **Calculating Information Rates:**

 - *For a finite-state input process, \(I(X, Y) \) can be efficiently estimated using the BCJR algorithm* [Pfister, et al., and Arnold and Loeliger, 2001].
On Joint Modulation and Coding for Intersymbol Interference Channels

Information Rates of ISI Channels (con’t)

Dicode Channel, \(h(D) = \frac{1}{\sqrt{2}} (1 - D) \).

![SNR vs Achievable Rate Graph]

Achievable w/ Shaping

Achievable w/ i.i.d. inputs

SNR Per Information Bit, \(E_b/N_0 \) (dB)
Q: How much power can we get out of the channel with binary-inputs?

- One can represent outputs from the ISI filter with a state graph.
- **Definitions:**
 - The *power* of a length-N output sequence, y, is
 \[G(y) = \frac{1}{N} \|y\|^2. \]
 - A *cycle* is a path which begins and ends at the same state.
 - A *simple cycle* is a cycle with unique edges.
 - G_{opt} is the maximum output power over all simple cycles.
- **Observation:** No sequence can have power greater than G_{opt} as length $N \to \infty$.
Example for $h(D) = 1 - D$.

- simple cycle $(-1, 1, -1)$
- inputs $(1, -1)$
- outputs $(2, -2)$
- $G_{opt} = 4$
On Joint Modulation and Coding for Intersymbol Interference Channels

Implications to the Low Rate Shannon Limit

- The **Low-Rate Shannon Limit** (LRSL) is the minimum E_b/N_0, or SNR per information bit, required for reliable communication at any nonzero rate.
 - It is well-known that the LRSL is $\ln 2 = -1.59$ dB on AWGN channel.

- Since no sequence of codes (with $N \to \infty$) can realize a power gain greater than G_{opt}, the minimum required E_b/N_0 on binary-input ISI channels is **at least**

 $$\ln 2/G_{opt} = -1.59 - 10\log_{10}(G_{opt}) \text{ dB}$$

 i.e., *ISI filter provides a gain (or loss) of G_{opt}.*

- Comparison with channel peak, $G_{max} = \max_\omega |h(e^{j\omega})|^2$:

<table>
<thead>
<tr>
<th>Channel</th>
<th>$h(D)$</th>
<th>G_{max}</th>
<th>G_{opt}</th>
<th>Gap (dB)</th>
<th>Input Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR4</td>
<td>$(1 - D^2)/\sqrt{2}$</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-1,-1,1,1,1</td>
</tr>
<tr>
<td>EPR4</td>
<td>$(1 - D)(1 + D)^2/2$</td>
<td>64/27</td>
<td>2</td>
<td>0.75</td>
<td>-1,-1,1,1,1</td>
</tr>
<tr>
<td>E²PR4</td>
<td>$(1 - D)(1 + D)^3/\sqrt{10}$</td>
<td>27/10</td>
<td>12/5</td>
<td>0.51</td>
<td>-1,-1,-1,1,1,1</td>
</tr>
</tbody>
</table>

University of California, San Diego
Optimal simple cycles can be used to achieve \(\ln 2 / G_{opt} \).

- Let the \(x_{opt} (y_{opt}) \) be the inputs (outputs) of an optimal simple cycle.

- **Modulation:**
 - For \(u \in \{ \pm 1 \} \), map \(u \rightarrow x_u = u(p, x_{opt}) \).
 - Sequence \(p \), of length-\(\nu \), puts channel in first state of optimal cycle.
 - If cycle length is \(L \), rate penalty is \(1 / (L + \nu) \).

- **Demodulation:**
 - Discard the header \(p \): \(r = uy_{opt} + n \)
 - System is equivalent to a BIAWGN channel with LRSL

\[
\frac{L + \nu}{L} \ln 2 / G_{opt}
\]

\((L \text{ can be made arbitrarily large by repeating the cycle}).\)
Consider a finite-state machine (FSM) modulation code S which maps data bits $\{U_k\}$ to channel input bits $\{X_k\}$:

- Let $\{U_k\}$ be \textit{i.i.d. and Bernoulli one-half}. This then induces a distribution on $\{X_k\}$ for which we estimate $I(X; \mathcal{Y})$. The overall rate of the channel with shaping code is

$$R < R(S) \cdot I(X; \mathcal{Y})$$

- It is achievable with coding on bits $\{U_k\}$ using:
 - an outer linear coset code C and maximum-likelihood decoding.
 - multilevel-codes/multistage-decoding.
 - \textit{For FSM codes, the BCJR-algorithm can be used to estimate} $I(X; \mathcal{Y})$.

Dicode channel with a biphase code, i.e., \(u \rightarrow x = (u, -u) \).
Joint Modulation and Coding Example (con’t)

- No “shaping gain” realized until $R < 0.4$. Interestingly, this helps explain result from Souvignier\(^1\), comparing two serial-turbo schemes on PR4 at $R = 8/18 = 0.444$:
 1. Inner and outer codes are convolutional codes.
 2. Inner code is the biphase code, outer is convolutional.

 \textit{Scheme 1 outperforms 2 by almost 3 dB at } P_b = 10^{-5} \text{.}

- Realizing almost all of the “shaping gain” requires no turbo-equalization; i.e., MLC/MSD with $m = 1$ represents the system:

\begin{center}
\begin{tikzpicture}[node distance=2cm, auto]
 \node (code) at (0,0) {Code};
 \node (biphase) [right of=code] {Biphase};
 \node (dicode) [right of=biphase] {Dicode Channel};
 \node (app) [right of=dicode] {APP};
 \node (siso) [right of=app] {Code SISO};
 \draw [->] (code) -- (biphase);
 \draw [->] (biphase) -- (dicode) node [midway, above] {\textit{(Dicode and Biphase)}};
 \draw [->] (dicode) -- (app);
 \draw [->] (app) -- (siso);
\end{tikzpicture}
\end{center}

Simple Shaping Code Design

• **Greedy-search** for rate $p : q$ shaping codes with *high average output power*.

1. Let G be a graph which represents channel output sequences. Form G^q.

2. For each state s in G^q:
 - Prune all but 2^p outgoing edges with the highest power.
 - Relabel inputs on these remaining edges with $0, \ldots, 2^p - 1$.

Results of greedy-search.

![Graph showing achievable rate vs. SNR per information bit, E_b/N_0 (dB)].
On Joint Modulation and Coding for Intersymbol Interference Channels

Summary

- **Characterized the Low-Rate Shannon Limit for binary-input ISI channels.**
 - For some channels, threshold equals that of real-inputs.

- **Examined the concatenation of a linear (coset) code and a FSM modulation code.**
 - Determined an achievable-rate region.
 - Designed simple shaping codes by pruning higher-power channel graph.

- **Possible Future Work:**
 - Design encoders which map into the “typical set” of an optimized Markov chain.
 - Incorporate with multilevel-coding/multistage-decoding, and optimize constituent low-density parity-check codes.
Supplement: Calculating Information Rates

- Numerical method\(^2\) for estimating \(I(\mathcal{X}, \mathcal{Y})\):

1. Sample entropies converge (Shannon-McMillan-Breiman):

 \[
 - \frac{1}{n} \log_2 p(y_1^n) + \frac{1}{n} \log_2 p(y_1^n|x_1^n) \to I(\mathcal{X}, \mathcal{Y}) \quad a.s.
 \]

2. \(p(y_i|y_1^{i-1})\) = normalization constant in forward-recursion of BCJR.
 Use to get sample entropy,

 \[
 - \frac{1}{n} \log_2 p(y_1^n) = - \frac{1}{n} \sum_{i=1}^{n} \log_2 p(y_i|y_1^{i-1}) .
 \]

- Can be extended to any finite-state machine (FSM) input process.
