Metal/native oxide multilayers:
A new material for recording head applications

Geoff Beach
CMRR & Dept. of Physics, UCSD

Collaborators:
Fred Parker, CMRR
David J. Smith and Bala Ramadurai, ASU
Vince Harris, NRL
Tom Silva, NIST Boulder
Sunil Sinha, UCSD
Mike Fitzsimmons, LANL
Outline

I. Motivations for new shield materials
II. Metal/Native Oxide Multilayers
 Structure, Fabrication
III. Magnetic characteristics of MNOMs
IV. Surprising properties of the native oxide
V. Conclusions
Magnetic Recording Head

Shield Functions:
1) Shield read sensor from stray flux
2) Act as lower pole in write operations

- High Permeability (μ)
- Low Coercivity (H_c)
- High Saturation Magnetization (M_s)
- Well-Defined In-Plane Anisotropy (H_k)
- High resistivity (ρ)
Eddy Currents in Shield Materials

Changing Magnetic Flux ⇒ Screening (Eddy) Currents

Eddy currents:
- Flow in a surface layer with thickness $\alpha \sqrt{\rho/f}$
- Shield interior from field (decreased effective permeability)
- Result in losses $\propto f^2/\rho$

Eddy currents minimized by *increasing resistivity*
Metal/Native Oxide Multilayer (MNOM)

Magnetic Oxide leads to
• Increased resistivity (1~10 mΩ-cm*) – inhibits eddy currents
• Increased saturation magnetization compared to films with nonmagnetic layers, (>1300 emu/cc*)
• Exchange coupling between nanocrystalline layers (large exchange length ⇒ soft magnetic properties)

*G. S. D. Beach, et. al, Appl. Phys. Lett. 79 (224) 2001
MNOM Fabrication:
\[\text{[Co}_x\text{Fe}_{1-x}(t_0)/\text{oxide}]_N \]

I. Deposit Co\textsubscript{x}Fe\textsubscript{1-x} layer (nominal thickness “t\textsubscript{0}”)

G.S.D. Beach
CMRR, May 22, 2002
MNOM Fabrication:

$[\text{Co}_x\text{Fe}_{1-x}(t_0)/\text{oxide}]_N$

I. Deposit Co$_x$Fe$_{1-x}$ layer (nominal thickness “t_0”)

II. Expose to O$_2$, forming native oxide layer (~10 s, 7x10$^{-5}$ Torr)
MNOM Fabrication:

\[\text{[Co}_x\text{Fe}_{1-x}(t_0)/\text{oxide}]_N \]

I. Deposit Co\(_x\)Fe\(_{1-x}\) layer (nominal thickness “\(t_0\)”)
II. Expose to O\(_2\), forming native oxide layer (~10 s, 7x10\(^{-5}\) Torr)
III. Deposit additional layers (total “\(N\)”)

G.S.D. Beach
CMRR, May 22, 2002
Cross-Sectional TEM: $[\text{Fe}(20 \text{ Å})/\text{oxide}]_{50}$
$M(H)$: Continuous Film vs. MNOM

MNOM:
- Dramatically lower coercivity
- Increase in squareness
- Large magnetization
Soft Magnetic Properties of MNOMs

- Well-defined in-plane anisotropy
- Low easy axis coercivity (up to an order of magnitude decrease)
- Ideal closed hard-axis loop

Easy axis defined by deposition field
Soft Properties of $[\text{Co}_x\text{Fe}_{100-x}(20 \text{ Å})/\text{oxide}]$

- Soft properties (low coercivity, low hard-axis dispersion) for wide composition range.

![Graph showing the relationship between magnetic properties and Co concentration](image-url)

G.S.D. Beach
CMRR, May 22, 2002
Composition Dependence:
[Co$_x$Fe$_{100-x}$ (20 Å)/oxide]

Soft properties appear near $x=90$

With metal fraction f (from Mössbauer, EXAFS), can determine oxide moment:

$$M_{MOM} = f \cdot M_{metal} + (1-f) \cdot M_{oxide}$$

Soft properties coincide with onset of oxide magnetism

G. S. D. Beach, et. al, J. Appl. Phys. 79 (7526) 2002
Oxide Magnetism

• Soft properties coincide with onset of oxide magnetism.

• Understanding the oxide is vital to understanding MNOM behavior.

Therefore,

• We have studied the \([\text{Fe}(t_0)/\text{oxide}]_N\), as a function of \(t_0\).
 → Simple MNOM system (one element; Mössbauer).
 → Can determine whether metal influences oxide properties.
 → Allows independent measurement of metal and oxide moment.
Outline:
Native oxide study

• Native oxide consists of 2 phases; both phases are magnetic.

• The minority phase behaves as a frustrated spin system, with no net moment.

• The majority phase cannot be identified with a bulk phase. It has a Fe$^{3+}$ valence, a moment 50% higher than any bulk Fe oxide phase, and couples ferromagnetically to the metal.
Outline:
Native oxide study

- Native oxide consists of 2 phases; both phases are magnetic.

- The minority phase behaves as a frustrated spin system, with no net moment.

- The majority phase cannot be identified with a bulk phase. It has a Fe$^{3+}$ valence, a moment 50% higher than any bulk Fe oxide phase, and couples ferromagnetically to the metal.

1) Mössbauer spectroscopy used to characterize Fe phases.
2) Combined with magnetometry ⇒ average oxide moment
3) Temperature dependence shows net oxide moment from only 1 component of oxide ⇒ moment of that component.
Mössbauer Spectrum: Hyperfine Field

Magnetic ordering causes spectrum to split into 6 lines.

- Splitting due to internal magnetic field at the nucleus
- Splitting related to atomic moment.

Hyperfine Field (H_{HF}): magnitude of sextet splitting; related to magnetic state of Fe
Nonzero Fe valence causes a horizontal shift of the spectrum.

- Shift due to s-electron density at the nucleus. Sensitive to Fe valence.
- Can be used to distinguish Fe valence (metal, oxide fractions).

Isomer Shift (IS): magnitude of horizontal shift; related to valence of Fe
Mössbauer Spectroscopy: Fe MNOMs

- MNOM spectrum contains two components: metal and oxide
- Spectrum fitted with metal and oxide subspectra.

Subspectra:
- Metal (Fe\(^0\)): Fe metal has bulk parameters.
- Oxide: Magnetically-split. Forms from 8.6 Å of metal.
Measurement of Oxide Moment:
\[[\text{Fe}(t_0)/\text{oxide}]_N\]

Mössbauer spectroscopy gives fraction of Fe as metal

Magnetization measurement gives average moment of MNOM

\(f\) : fraction of Fe as metal

\(\mu_s\) : sample moment (in \(\mu_B/\text{Fe atom}\))

\(\mu_{\text{metal}}\) : moment of the metallic Fe

\(\mu_{\text{oxide}}\) : average moment of oxide phase(s)

\[
\mu_s = f \cdot \mu_{\text{metal}} + (1-f) \cdot \mu_{\text{oxide}}
\]

\(\mu_s\) is linear in \(f\)

Can independently determine \(\mu_{\text{oxide}}\) and \(\mu_{\text{metal}}\) by varying \(f\).

\[\rightarrow\] Accomplished by varying \(t_0\) (oxide thickness stays constant).

G.S.D. Beach
CMRR, May 22, 2002
Sample Moment vs Metal Fraction:
\[[\text{Fe}(t_0)/\text{oxide}]_N\]

Above a critical layer thickness \(t_0 \approx 15 \, \text{Å}, \mu_s \) is linear in \(f \):

\[
\mu_s = (\mu_{\text{metal}} - \mu_{\text{oxide}}) f + \mu_{\text{oxide}}
\]

Slope: \(\mu_{\text{metal}} - \mu_{\text{oxide}} \)

Intercept: \(\mu_{\text{oxide}} \)

\[
\mu_{\text{metal}} = 2.1(1) \, \mu_B \\
\mu_{\text{oxide}} = 1.40(7) \, \mu_B (\text{average!})
\]
Results I

• Oxide is magnetic, with average moment $1.40(7) \mu_B$.
 (compare to γ-Fe$_2$O$_3$ (1.15 μ_B) and Fe$_3$O$_4$ (1.35 μ_B))

• Oxide always forms from $8.6(3)$ Å of metal.

• Oxide moment deteriorates if metal layer too thin; oxide moment constant for $t_0>15$ Å.
Results I

- Oxide is magnetic, with average moment 1.40(7) μ_B.
 (compare to γ-Fe_2O_3 (1.15 μ_B) and Fe_3O_4 (1.35 μ_B))

- Oxide always forms from 8.6(3) Å of metal.

- Oxide moment deteriorates if metal layer too thin; oxide moment constant for $t_0>15$ Å.

Is oxide homogeneous? (we only have average oxide moment)
Oxide Hyperfine Field (HF) Distribution:
\[\text{[Fe(20 Å)/oxide]}_{50} \]

Oxide fitted with subspectra with a HF distribution

2 Oxide “Phases”:
• 70% of oxide in 3 main subspectra (Fe\(^{3+}\), unique hyperfine field)
• 30% of oxide in weakly magnetic “tailing”
Oxide Hyperfine Field (HF) Distribution: [Fe(20 Å)/oxide]_{50}

Oxide fitted with subspectra with a HF distribution

2 Oxide “Phases”:
• 70% of oxide in 3 main subspectra (Fe^{3+}, unique hyperfine field)
• 30% of oxide in weakly magnetic “tailing”

Is it possible to study the two oxide phases separately?
→ Yes - temperature dependence!
Temperature Dependence: Hyperfine Fields

HF and atomic moment have the same temperature dependence.

- Average HF of 3 main subspectra shows small change between 4.2 K and 300 K.
- Average HF of tailing drops by factor of ~4 from 4 K to room temperature.
Temperature Dependence:
HF vs. Moment

Magnetometer measures *net* moment.

Net sample moment changes by ~2% from 5 K to 300 K, same as for bulk Fe

“Tailing” HF (and thus atomic moment) changes by a factor of 3.

Tailing accounts for 13% of Fe in sample⇒ Tailing has no *net* moment!
Implications for Oxide Moment

\[\mu_{\text{oxide}} = \text{average oxide moment} = 1.40(7) \left(\mu_{B}/\text{oxide Fe} \right) \]

\[\mu_{\text{oxide}} = 0.3 \cdot \mu_{\text{tailing}} + 0.7 \cdot \mu_{\text{3main}} \]

\[\Rightarrow \mu_{\text{3main}} = \frac{\mu_{\text{3main}}}{0.7} \]

\[\mu_{\text{3main}} = 2.0(1) \left(\mu_{B}/\text{oxide Fe} \right) \]

Oxide phase in 3 main subspectra has a moment 50% larger than that of magnetite (Fe₃O₄)!

G.S.D. Beach
CMRR, May 22, 2002
Results II

• Oxide is composed of 2 magnetic phases.

• 30 % of oxide is weakly magnetic at room temperature, with no net moment (similar to spin glass, antiferromagnet)

• 70 % of oxide is strongly magnetic, with well-defined hyperfine field (magnetic environment).

• Majority phase has a net moment of 2.0(1) \(\mu_B \).
 [compare to \(\gamma \)-Fe\(_2\)O\(_3\) (1.15 \(\mu_B \)) and Fe\(_3\)O\(_4\) (1.35 \(\mu_B \))]

• Majority phase is Fe\(^{3+}\), and has average \(H_{HF}=385 \) kOe.
 [compare to \(\gamma \)-Fe\(_2\)O\(_3\) (~520 kOe)]
Conclusions

• We have developed a novel Metal/Native Oxide Multilayer (MNOM) structure.
• Magnetic/structural properties are ideal for high-frequency applications.
 → magnetically soft
 → high moment
 → high resistivity
• The native oxide plays important role in soft properties.
• The native oxide is a unique interfacial oxide phase with a considerable moment. Can the moment be increased further?