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Shannon’s incredible legacy

A mathematical theory of
communication

Channel capacity
Source coding
Channel coding
Cryptography
Sampling theory

(1916-2001)



And many more...

* Boolean logic for switching
circuits (MS thesis 1937)

e Juggling theorem:
H(F+D)=N(V+D)

=<0
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time a ball spends iIn the air,
time a ball spends in a hand,
time a hand i1s vacant,

number of balls juggled,
number of hands.

P

(1916-2001)



Story: Shannon meets Einstein

As narrated by Arthur Lewbel (2001)

o

The story is that Claude was in the middle of giving a lecture
to mathematicians in Princeton, when the door in the back of
the room opens, and in walks Albert Einstein.

Einstein stands listening for a few minutes, whispers
something in the ear of someone in the back of the room,
and leaves. At the end of the lecture, Claude hurries to the
back of the room to find the person that Einstein had
whispered too, to find out what the great man had to say
about his work.

The answer: Einstein had asked directions to the men’s room.

”




Outline
Shannon-inspired research stories:

III

Three “persona

Chapter 1

Duality between source coding and channel coding —
with side-information (2003)

Chapter 2

Encryption and Compression — swapping the order
(2003)

Chapter 3

Sampling and Learning — Sampling below Nyquist rate
and efficient learning (2014)



Chapter 1

Duality

e source & channel
coding

e with side-information

Sandeep 'Pradhan Jim‘Ehou




Shannon’s celebrated 1948 paper

The Bell System Technical Journal

Vol. XXVII July, 1948 No. 3

A Mathematical Theory of Communication

By C. E. SHANNON general theory of communication

INTRODUCTION
HE recent development of various methods of modulation such as P, . . . H
and PPM which exchange bandwidth for signal-to-noise ratigsfas in- commun |Cat| on Syste M as sou FCG/C h anne |/d eStI n at Ion
tensified the interest in a general theory of communication. basis for
such a theory is contained in the important papers of Nyquist' and Hartley?
on this subject. In the present paper we will extend the theory to include a .
number of new factors, in particular the effect of noise fn the channel, abstraction of the concept of message
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are

correlated according to some system with certain physical or conceptual INFORMATION
entities. These semantic aspects of communication are irrelevant to the SOURCE TRANSMITTER RECEIVER QESTINATION
engineering problem. The significant aspect is that the actual message is
one selected from a sel of possible messages. The system must be designed L] S 1 B -

. . . . . RECEIVED
to operate for each possible selection, not just the one which will actually SIGNAL SIGNAL
be chosen since this is unknown at the time of design.

ME S5AGE MESSAGE

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized copsiderably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all S';?Jlgg €
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. Tt is practically more useful. Parameters of engineering importance

Fig. 1—Schematic diagram ol a general communication system.

! Nyquist, H., “*Certain Factors Affecting Telegraph Speed,” Bell System Technical Jour-
nal, April 1924, p. 324; “Certuin Topics in Telegraph Transmission Theory,” 4. 1. E. E
Trans., v. 47, April 1928, p. 617.

2 Hartley, R. V. L., ““Transmission of Information,”” Bell Svstem Technical Journal, July
1928, p. 535,

379



Source coding

Information X
source
H(X)=Eyx

/

Entropy of a random variable

Source
encoder

s (5

= minimum number of bits required to represent the source

)



Rate-distortion theory - 1948

 Trade-off between compression rate and the distortion

PART V: THE RATE FOR A CONTINUOUS SOURCE Mutual information:

27. FipELITY EVALUATION FFUNCTIONS ﬂ (X ) 'H (X / y)

In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably more involved. 1In the first place a continuously variable quantity
can assume an infinite number of values and requires, therefore, an infinite R( D) — min I ()(7 Y)
number of binary digits for exact specification. This means that to transmit Py B (y | g;)
the output of a continuous source with exact recovery at the receiving point
requires, in general, a channel of infinite capacity (in bits per second). : [ ( )]
Since, ordinarily, channels have a certain amount of noise, and therefore a Sub'] ect to ]E d X’ Y S D
finite capacity, exact transmission is impossible.
This, however, evades the real issuc. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-
mission to within a certain tolerance. The question is, can we assign a distortion measure
definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-



Channel coding

INFORMATION

SOURCE  TRANSMITTER RECEIVER TINATION
3
IGNA RECEIVED
SIGNAL SIGNAL

ME SSAGE MESSAGE

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

capacity
e Forrates R < C(, can achieve /
: C(W) = max I(X;Y)
arbitrary small error Px (z)
probabilities subject to E [w(X)] < W
e Used to be thought one needs /
R -0

cost measure



Shannon’s breakthrough

e Communication before Shannon:

— Linear filtering (Wiener) at receiver to remove noise

e Communication after Shannon:

— Designing codebooks
— Non-linear estimation (MLE) at receiver

N\

Reliable transmission at rates
approaching channel capacity



Shannon (1959)

“There is a curious and provocative duality between the
properties of a source with a distortion measure and those of a
channel. This duality is enhanced if we consider channels in
which there is a cost associated with the different input letters,

and it is desired to find the capacity subject to the constraint that
the expected cost not exceed a certain quantity



Shannon (1959)

...This duality can be pursued further and is
related to a duality between past and future and
the notions of control and knowledge. Thus, we
may have knowledge of the past but cannot
control it; we may control the future but not
have knowledge of it.”



Functional duality

When is the optimal encoder for one problem functionally
identical to the optimal decoder for the dual problem?

source coding
Quantized

Source bits bits Source
> Encoder > Decoder >

channel coding

bits bits
> > > Decoder >
input output




Duality example: Channel coding

Binary Erasure Channel
I} N

m m
___,| Channel ' X BEC X Channel -,

R-bit Encoder binary | channel [ binary Decoder | R-bit

message input output estimate

You want to send »-= .age m: how big can you make R?

0 > ()
- D
X D * X
1 - > 1 Shannon’s result:

Cpec=(1-p) bits
per channel use

p = 0.2
Cost (0)=1; Cost(1) =1
Total budget < 10,000



What is the Shannon capacity?

0.8
0 > ()
m 0.2 m
» Encoder —m—— 0.2 A » Decoder >
1 » 1
0.8
The decoder knows
which bits are erased
(channel output)
\ \4

/ Suppose the

* * encoder also

knows which bits
W are erased (genie) Cprc < 0.8 bits/ch. use
Number of non-erased bits

Send information in ~ 10,000 x (1 —p)
non-erased locations =10,000 x 0.8

= 8,000
Surprise: the encoder does not need to know which bits are erased!




Shannon’s prescription: random coding

IID random coin-flips:
Bernoulli(1/2) entries 1) Encoder & Decoder agree

10,000
R > on a random codebook
\" 010101... Shannon’s random coding argument
~¢T00110... D —
2) Encoder encodes message
011100... :
98,000 Output the codeword corresponding to
the index
~€110010... 3) Decoder decodes message
/V \ Output the index corresponding to the
Codebook for closest codeword

msg. M  channel coding 100011...



w=nion  \Why does it work?

B(1/2) entries

10,000
\F —> input to the channel
11"1001000010101000... » 1110000111001110...
Say sending | 19111011111101110... .
m =13 Channel will erase
1110000111001110... 20% of bits
8,000
2 v k sk sk kk sk
111000011100 tedsde@emme=
1101011001010010... 8,000 2,000
v R <€ > >
Codebook for 100100001010

channel coding

111101111110
<€ 259991 1111000011100

* Successful decoding if the non-
erased string is unique

e 8,000 bits will induce unique
match if (random) codebook size K
is <28000 w.h.p. 110101100101:

erased locatio




Source Coding Dual to the BEC: BEQ

XE{O,l,*}lO’OOO A
| Source m R m Source X -
Encoder ] Decoder ]
01*1*00110...
Compressed bit-stream Want the average
8,000 bits distortion to be < 0.2

p(0) =p(1) = 0.4;
p(x) = 0.2 0 ifz=uxforaxe{01}
d(x,z) =< oo if & #x for x € {0,1}

4’ 1 ifz =«
/

* is like a “don’t care” symbol
(e.g., perceptually masked
symbols). How can we

X 1 O0ll1 0oll1 © exploit this for compression?

cost: 0 1 00
- /

Martinian and Yedidia, 2004




Source Coding Dual to the BEC: BEQ

X | Source m m Source X R

01*1*00110.. | Encoder ] Decoder ]
p(0) =p(1) =04
p(x) =0.2

The encoder knows
which symbols are ‘ * '
(source attribute)

\ 4 Suppose the decoN
also knows which are

\ 4
X X the ‘*” symbols (genie) * X

W Rpro(0.2) = 0.8 bits/symbol
Number of non ‘+” symbols to send

Send the non-* bits: ~ 10,000 x (1 —p(*))
01100110... =10,000 x 0.8 = 8,000

Surprise: the decoder does not need to know which symbols are ‘*’!




Source Coding Dual to the BEC: BEQ

Vo

X | Source m m Source X ‘
String Length Encoder c ] _ Decoder j
ompressed bitstream Want the average
10,000 8,000 bits distortion
p(0) = p(1) = 0.4; to be <0.2
p(x) = 0.2

How would you do it?

Use channel encoder
as source decoder

Use channel decoder
as source encoder

3

|

\

' 0
m | Channel 0.2 . | Channel
Encoder 0.2 Decoder

1 1

v



Shannon’s prescription: random coding

IID random coin-flips:

10.000 Bernoulli(1/2) entries 1) Encoder & Decoder agree

msg. m < > on a random codebook
\"‘ 010101... Shannon’s random coding argument
\' 00110... -
00 - 2) Encoder encodes message
011100... Outptr-thecadeword correspendimg to
28,000 the-frroiex —
Output the index corresponding to the
closest codeword
~4110010...
/V 3) Decoder decodes message
Codebook

msg. m 100011._.. eword -

Output the codeword corresponding to
the index




1D randorn Why does it work?

B(1/2) entries

\ 10,000
-« o

'1'1001000010101000...
1111011111101110..

238,000

1101011001010010...

Codebook for
source coding

1

Index of the codeword that
exactly matches the non-*
part of input string

1110000111001110... |=—>

Successful
encoding if the
“non-*” part of
input string is
present in the
codebook

8,000 bits will
induce an exact

match if random A

codebook size is
> 258000 w h.p.

€ 28,000

Bitstream of
length 10,000

p(0) =p(1) =04

<€

p(x) = 0.2

|

1110000111005 sk

8,000 2,000
> <€ >

100100001010

111101111110

111000011100

locations wit

110101100101




Knowledge of the erasure pattern

Channel coding
m X X m
»  Encoder Channel » Decoder >
The encoder does l . l The decoder knows
not need to knom erasure pattern
* % % *
Source coding
X m X
» Encoder » Decoder p—m—m—
The encoder knows The decoder does not
the don’t care need to know the
locations don’t care locations




Duality between source and channel coding

REVERSAL OF ORDER

Optimal N BN
1) |  Quantizer P —— 4 Channel P
X @) | X X | p@ | X

Given a source coding problem with source distribution q(x),
optimal quantizer p*(X|x), distortion measure d(x, X) and
distortion constraint D

There is a dual channel coding problem with channel p*(x|X)
cost measure w(X) and cost constraint W such that

R(D) = C(W)

wR)=e; D@ (x|2) |lqC)) +6 W =Eqw(X).
Pradhan, Chou and R, 2003



Interpretation of functional duality

For any given source coding problem, there is a dual channel
coding problem such that:

e both problems induce the same optimal joint distribution

e the optimal encoder for one is functionally identical to the
optimal decoder for the other

e an appropriate channel-cost measure is associated

Key takeaway

Source coding
distortion measure is as important as the source distribution
Channel coding
channel cost measure is as important as the channel conditional distribution



Duality between
source coding with side information
and
channel coding with side information

27



Source coding with side information (SCSI):

S8

f' R>H(X|S)

—» Encoder — Decoder

g\ T

X — @ S Jack Keil Wolf
OF
N AL

 (Only) decoder has access to side-information S

eStudied by Slepian-Wolf ‘73, Wyner-Ziv '76, Berger 77

e Applications: sensor networks (loT), digital upgrade,
secure compression.

*No performance loss in some important cases




Channel coding with side information (CCSI):

7.\
m X Y m
—| Encoder Channel |—| Decoder |——

e

. (Only) encoder has access to interfering” side-information S

e Studied by Gelfand-Pinsker ‘81, Costa ‘83, Heegard-El Gamal ‘85

e Applications: data hiding, watermarking, precoding for known
interference, writing on dirty paper, MIMO broadcast.

e No performance loss in some important cases




Channel coding with side information (CCSI):

e X 2 Y
—»| Encoder —{"ﬁ =\'|T'J » Decoder
Z

Y=e+S+Z

N
m
—

. Encoder (only) has access to “interfering” side-information S

e Studied by Gelfand-Pinsker ‘81, Costa ‘83, Heegard-El Gamal ‘85

e Applications: data hiding, watermarking, precoding for known
interference, writing on dirty paper, MIMO broadcast.

e No performance loss in some important cases




Duality between source coding
& channel coding with side information

source coding with side information (SCSI)

Quantized

Source bits bits Source
Encoder > Decoder >

A\ 4

Internet of Things (loT), video s ing,

. . : . TSide-information
multiple description coding, secure co essio

channel coding with side infor n (CCS
bits bits
> ~ »  Decoder >
input output
Side-informationT Watermarking, data hiding,

multi-antenna wireless broadcast

Pradhan, Chou and R, 2003
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Chapter 2

Cryptography
e Compressing
encrypted data

I\'/I'a'rkJohnson Prakash Ishwar

b ]
Vinod Prabhakaran




Cryptography — 1949

 Foundations of modern cryptography
e All theoretically unbreakable ciphers must have the properties of one-time pad

Communication Theory of Secrecy Systems*
By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

HE problems of cryptography and secrecy systems furnish an interest-

ing application of communication theory.! In this paper a theory of
secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.? There, a detailed study is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
systems.



Compressing Encrypted Data

“Correct” order

H(X) bits H(X) bits
Encrypt >

\ 4

X " Compress

Source

Cryptograhic ‘

Ke
’ K
Wrong order?
X Y H(X) bits
Source ] AmETyRE > Compress >

Cryptograhic [
Key
K
Johnson & R, 2003



Example

Original Image

10,000 bits

Decoding Compressed

0
ank
Flijs
50
B0
mE
il
=i

100 &

Image

20

30 40 a0 =] 70
Iteration 1

a0

a0 100

5,000 bits

Compressed
Encrypted Image

v
—
—
Final
Reconstructed
Image




Original Image

10,000 bits

Key Insight!

Source
—

X

Encrypter

\ 4

I Key

K

Encoder

U

5,000 bits?

Decoded Image

\ 4

Joint Decoder/Decrypter

Syndrome

Decoder

—>1 Decrypter

|

Reconstructed
Source

v

|

« Y =X+ Kwhere Xis independent of K

o Slepian-Wolf theorem:
can send X at rate H(Y|K) = H(X)

Key

X



SCSI: binary example of noiseless compression
(Slepian-Wolf '73)

® Xis uniformly chosen from {[000], [001], [010], [100]}
® Kis alength-3 random key (equally likely in {0,1}3)
m Correlation: Hamming distance between Y and K at most 1
® Example: whenK=[010], Y=>[010],[011],[000],[110]
Y=X+K ( —
— Encoder — —{ Decoder — X o X
|
K Case 1
e Encoder computes X=Y+K (mod 2) 00 = | 000
 Encoder represents X using 2 bits 0131001 | —y4K
10 =»| 010
e Decoder outputs X (mod 2) 11 ] 100




(Slepian-Wolf '73)

Y X=X
Y — Encoder — — Decoder —*
000 T
111
K Case 2
Coset-1

Coset-1 [0 0 O Coset-2 [0 0 1
(00) (01) 1 1 0

1 1 1]
nset-3 m Coset-4 [1 0 O]
(20) _1\0/1_ 1) o 1 1

« Transmission at 2 bits/sample
« Encoder => send index of the coset containing X.
« Decoder => find a codeword in given coset closest to K

Example: Y=010 (K=110) => Encoder sends message 10



~ | Encoder MM, M,

Geometric illustration

OXOXOXOIONOXO,

AY (encrypted)

—Signal to decoder

Decoder

Y=X+K

'k

S

(unencrypted &
compressible)



Example: geometric illustration

> OO0OOOOLG




Practical Code Constructions

e Use a linear transformation (hash/bin)

e Design cosets to have maximal spacing
— State of the art linear codes (LDPC codes)
e Distributed Source Coding Using Syndromes (DISCUS)*

*Pradhan & R, 03
Source

Codewords Bin 1 Bin 2 Bin 3



Presenter
Presentation Notes
--------------------------------------------------------- 
The SW theorem is proved in Cover and Thomas by using random binning arguments.  That is, dividing the input codespace into 2^nR bins and sending only a codewords bin index.   But Csiszar showed that the SW could be achieved using linear codes.  
Earlier I mentioned that X and Y can be seen as being related via a test channel.�Combining these two facts suggests using linear channel codes to perform the random binning.  For notation, we’ll say a (n,k) channel code has generator G and parity check H.  Now, if we use a channel code powerful enough for the test channel between X and Y, we can than find a codewords bin index by finding it’s syndrome with respect to the codes parity check matrix.


-_--._#——

Chapter 3

Sampling theory

e Sample and compute
efficient sampling (and
connections to learning)




Sampling theorem

Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE

Theorem 1: If a function f(¢) contains no frequencies
higher than W ¢ps, it is completely determined by giving

its ordinates at|a series of points spaced 1/2 W |seconds
apart.

pointwise sampling!

Mathematically, this process can be described as follows.

Let x,, be the nth sample. Then the function f(¢) is
represented by

B = ~sinT(2Wt —n)
0= 2. " =G ()

nN==—0o0

Whittaker Kotelnikov
1915 1933

linear interpolation!




Aliasing phenomenon

Time domain Frequency domain
Input signal
LR / \ *\ / - . Bgndwidth of 1 Hz
¥4 \ / \
. . : : - - - - -
() 1 2 5 () 1 2

Sampling at rate 1 No aliasing

— can recovery by linear filtering

Y R

0 1 2 5 0 1 2

Sampling at rate 1/2

Spectrum is aliased!

- | 4“““_.!

0 1 2 5 0 1 2



But what if the spectrum is sparsely occupied?

Frequency domain

I W N "

o Wi Wa W5 1GHz

5)
foce =Y W; = 100MHz

=1
Henry Landau, 1967
— Know the frequency support
— Sample at rate “occupied bandwidth” focc (Landau rate)

When you do not know the support?

 Feng and Bresler, 1996

e [uand Do, 2008

 Mishali, Eldar, Dounaevsky and Shoshan, 2011
* [im and Franceschetti, 2017



Filter bank approach

Input in frequency domain

A &,

no aliasing

Know the frequency support, fllter and sample thanks to filtering
Sampllng /y
‘ | S -_.HII" m
? ? ?
"
Filtering ¢ = ’7\ -
? ? ?
& .
b e - 7(\‘ e
? ? ?

Sampling spectrum-blind?

Requires 2focc. Can we design a constructive scheme? |y and Do, 2008



-
- - e

@ e @ @ W

100 grams
each

-
?
-
?
prosessc ooy
S © 0 000 FEN

(™ (™ o (™
(™ = = (™
[ (™
(™ - (™ [
(™ o = [
(™ o = [
P —_—
a N
1 1 1 1 1
1 2 3 4 5
o )

Ratio-test identifies the location

One unknown thief

Steals unknown but
fixed amount from
each coin

What is min. no. of
weighings needed ?

e 2 are enough!

Differential weight

-5 yl
20 T |y2



ng 12-treasurers
b &

@;‘1\ 4 L\’E Key ldeas:
9 10 11 12 1. Randomly group the treasurers.
2. If thereis a single thief problem
v" Ratio test
| \ v Iterate.
3 singleton
bin-3
Questions:

1. How many groups needed?

2. How to form groups?

3. How to identify if a group has a
single thief?

bin-4  gingtaton



Main result

Any bandlimited signal x(t) € C whose spectrum has occupancy f,c.
can be sampled asymptotically at rate f; = 2f,.. by a randomized
“sparse-graph-coded filter bank” with probability 1 using O( foec) op-
erations per unit time.

Remarks
» Computational cost O(focc) independent of bandwidth

e Requires mild assumptions (genericity)
e Can be made robust to sampling noise

Ocal, Li & R, 2016

50



Key insight for spectrum-blind sampling

subsampling ‘ aliasing

“judicious” filtering/subsampling mmmm) “good” aliasing

* To reduce sampling rate, subsample judiciously

e Filter bank derived from capacity-achieving codes
for the Binary Erasure Channel (BEC) (LDPC codes)

* Introduces aliasing (structured noise)
* Non-linear recovery instead of linear interpolation



Filter bank for sampling

Aol FIX(F) - - - XS]

X(f) .\ ‘ I ‘ ‘
0 T Iy fa /
=

e Sample the signal at rate B

B samples/sec X (el?71) i
z(t) 7"\ - |71 ;

L 1
- Filter and then sample at rate B
BEEEEEEEEE |
H) F—————————— B samples /sec 1"{&“'.-""‘1”}

b T 88 A - uln

I_I_'f



Presenter
Presentation Notes
What is our approach
Why is it different from prior work


Filter bank for sampling

X(f) - . |

x(t)

0 L S

5 L B samples/sec
N
Sa—
N -
—
e :i— f
7N -
2 = [ i
7N -

Aggregate sampling rate: NfTM = fu = Nyquist rate for x(t)


Presenter
Presentation Notes
What is our approach
Why is it different from prior work


‘Sparse-graph-coded’ filter bank

KXol FIXF) o vee Xuqlf)
X(f) '
m filters — h . I‘—]—-: 7 f
N bands o A
o Bsamplesfsec oz
00000 Oo@o] 2~ wkl _ .-,
— 0 fMoioioiooi0 0 g Ly
110 0. 0.0 0fTlo 00 7S - [,
MomMmoio oo N -
z(t) O OMTT 0000 | 7N - M
Mmoo ordo 7N Ym-aln] ﬂf
/ }-i'li'—ll {U'J_J_ rjl
/00 000 1 1 0 1 0)
01 00000TO0O01 Xo( )
3¢ j2x f 1 0 0 0 0 0 1 0 0 0] z . ¢ )
V™) =10 1 0100 0 1 1 o X(Bf) where X(f)= ( o
g o 1 1 1 1 0 0 0 0 Xn-10f)
\l 01 010010 1)

e = N matrix


Presenter
Presentation Notes
As can be seen, if I have too many ones in the rows of the matrix then they mix too much
if I have too many zeros then I cannot capture the signal
I need to design carefully to get enough and not too much


Example — sparse graph underlying the measurements

(000 000 1 10 1 0)
01 00000O0GO0O01
S 1 000001000
Flog2mfy
Y™ ) =191 010001 1 o XED
o 0 1 1 1 1 0 0 0 0
\l 01010010 1)

Sparse bipartite graph
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Presentation Notes
What is our approach
Why is it different from prior work


Example — sparse graph underlying the measurements

bands channels

visual cleaning for presentation:
remove edges that connect to non-active
bands



Presenter
Presentation Notes
What is our approach
Why is it different from prior work


Example — peeling

bands channels

Measurement classification

zero-ton: no signal

no aliasing

multi-ton: aliasing



Presenter
Presentation Notes
What is our approach
Why is it different from prior work


Example — peeling

bands channels

Measurement classification

zero-ton: no signal

n no aliasing

multi-ton: aliasing

Assume a mechanism:

identifies which channels have
no aliasing (here B and F) and
maps them to which bands they
came from (here 1 and 4 resp.)



Presenter
Presentation Notes
What is our approach
Why is it different from prior work


Example — peeling

channels

mechanism:

identifies which channels

A have no aliasing and maps
B them to which bands they
came from
C
output:

channel B: (red, index = 1)
channel F: (blue, index = 4)



Presenter
Presentation Notes
What is our approach
Why is it different from prior work


Example — peeling

channels

mechanism:

identifies which channels

A have no aliasing and maps

B them to which bands they
came from

C

S OUtpcﬂghnel B: (red, index = 1)

channel F: (blue, index = 4)

peel from channels they alias into!



Presenter
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Example — peeling

bands channels

mechanism:

identifies which channels
have no aliasing and maps

Al

B them to which bands they
came from
C
= ol
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bands

Example — peeling

channels

Al

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

output:

channel D: (green, index = 8)
channel E: (cyan, index = 5)



Presenter
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Why is it different from prior work


bands

Example — peeling

channels

Al

mechanism:

identifies which channels
have no aliasing and maps
them to which bands they
came from

output:

channel D: (green, index = 8)
channel E: (cyan, index = 5)

peel from channels they alias into!
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Example — peeling

bands channels

mechanism:
identifies which channels

A have no aliasing and maps

B them to which bands they
came from

C signal is completely recovered!

D]

E

F |
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Does this peeling always work. No. But you can design. Coding theory. Design of sparse graph codes for erasure channels which are known to be capacity approaching.


Construction of the sparse-graph code

e Designed through capacity-
approaching sparse-graph codes

e Connect each band to channels at
random according to a carefully
chosen degree distribution.

: e Asymptotically, number of channels
§ is (1 + €) times the number of

bands channels

active bands

Degree distribution for e = 1/20
®

o
(N}

e
—

P(degree = j) x j_ilforj=2,3,...D

[ITTTT?T?????QQ!Q,!,

5 1|0 15 20
degree

k

fraction of bands

D> 1/e

o
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Presentation Notes
YOu should take care of designing the filter bank, this design is sparse graph codes
THen you will need minimum number of channels
And it will be O(K) will give f_L
You need K channel son the right


Realizing the mechanism

ldentify which channels have no aliasing and map them to bands

same magnitude response
‘stairs’ phase response

Hy(f) | k = /\ ' h . |

magnitude

phase stairs _‘—‘
phase -—l__I_

0 fm 0 fm

\ /

identifies dark blue band as a singleton
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As can be seen, if I have too many ones in the rows of the matrix then they mix too much
if I have too many zeros then I cannot capture the signal
I need to design carefully to get enough and not too much
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Numerical experiment

Input spectrum and time domain signal

L L]

o

0.2 0.4 0.6 0.8

frequency

N o o o=
T T

-1000 -500 0 500

sampling instant [Nyquist rate]

e Lebesgue measure fr = 0.1
e Number of slices N = 1000
Number of channels M = 284

e Sampling rate fg = 0.284

1000

sample value

sample value

sample value

Output from two sample channels

sampling instant [Nyquist rate]

0.05
-0.05 : : : :
-1000 -500 0 500 1000
sampling instant [Nyquist rate]
0.15
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|
0
_005 1 1 1 I 1
-1000 -500 0 500 1000
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| true signal O estimates
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Interesting connection

Coding theory Sampling theory

Sparse-graph coded filter bank
 Minimum-rate spectrum-blind sampling

e Coding theory and sampling theory
— Capacity-approaching codes for erasure channels

— Filter banks that approach Landau rate for
sampling

68
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Broad scope of
applications

Pedarsani, Lee, R., 2014

Compressive
phase
retrieval

Sparse
mixed linear
regression

Yin, Pedarsani, Chen, R., 2016

Sub-Nyquist
sampling
theory

Sparse-graph

codes

Compressed
sensing

Ocal, Li, R., 2016

Pawar, R., 2013
Li, Pawar, R., 2014

Sparse
Spectrum
(DFT/WHT)

Fast
neighbor
discovery for
loT (group
testing)

Lee, Pedarsani, R., 2015

Li, Pawar, R., 2014



Conclusion: Shannon’s incredible legacy

e A mathematical theory of
communication

e Channel capacity
e Source coding

e Channel coding

e Cryptography

e Sampling theory

His legacy will last many
more centuries!

(1916-2001)
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Thank you!
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