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Shannon’s incredible legacy

• A mathematical theory of 
communication

• Channel capacity

• Source coding

• Channel coding

• Cryptography

• Sampling theory

• …

(1916-2001)



And many more…

• Boolean logic for switching 
circuits (MS thesis 1937)

• Juggling theorem: 
H(F+D)=N(V+D)

F: the time a ball spends in the air,
D: the time a ball spends in a hand, 
V: the time a hand is vacant,
N: the number of balls juggled,
H: the number of hands. 

• …

(1916-2001)



Story: Shannon meets Einstein

As narrated by Arthur Lewbel (2001)

“
The story is that Claude was in the middle of giving a lecture 
to mathematicians in Princeton, when the door in the back of 
the room opens, and in walks Albert Einstein. 

Einstein stands listening for a few minutes, whispers 
something in the ear of someone in the back of the room, 
and leaves. At the end of the lecture, Claude hurries to the 
back of the room to find the person that Einstein had 
whispered too, to find out what the great man had to say 
about his work. 

The answer: Einstein had asked directions to the men’s room.
”



Outline
Three “personal” Shannon-inspired research stories: 

Chapter 1
Duality between source coding and channel coding –
with side-information (2003)

Chapter 2
Encryption and Compression – swapping the order 
(2003)

Chapter 3
Sampling and Learning – Sampling below Nyquist rate 
and efficient learning (2014)



Chapter 1

Duality 
• source & channel 

coding
• with side-informationSandeep Pradhan Jim Chou



Shannon’s celebrated 1948 paper

general theory of communication

communication system as source/channel/destination

abstraction of the concept of message



Source coding

Source
encoder

Information
source

Entropy of a random variable
= minimum number of bits required to represent the source



Rate-distortion theory - 1948

• Trade-off between compression rate and the distortion

distortion measure

Mutual information:

H(X)-H(X|Y)



Channel coding

• For rates 𝑹𝑹 < 𝑪𝑪, can achieve 
arbitrary small error 
probabilities

• Used to be thought one needs 
𝑹𝑹 → 𝟎𝟎

capacity

cost measure



Shannon’s breakthrough

• Communication before Shannon:
– Linear filtering (Wiener) at receiver to remove noise

• Communication after Shannon:
– Designing codebooks
– Non-linear estimation (MLE) at receiver

Reliable transmission at rates
approaching channel capacity



“There is a curious and provocative duality between the 
properties of a source with a distortion measure and those of a 
channel. This duality is enhanced if we consider channels in 
which there is a cost associated with the different input letters, 
and it is desired to find the capacity subject to the constraint that 
the expected cost not exceed a certain quantity…..

Shannon (1959)



Shannon (1959)

…This duality can be pursued further and is 
related to a duality between past and future and 
the notions of control and knowledge. Thus, we 
may have knowledge of the past but cannot 
control it; we may control the future but not 
have knowledge of it.”



Functional duality

When is the optimal encoder for one problem functionally 
identical to the optimal decoder for the dual problem?

Encoder Decoder
bitsbits

DecoderEncoder
bitsbits

Source
Quantized
Source

Channel 
input

Channel 
output

source coding

channel coding



Duality example: Channel coding
Channel
Encoder

m
Channel
Decoder

m
^

BEC
Channel

XX̂
R-bit
message

binary
input

binary
output

R-bit
estimate

You want to send message m: how big can you make R?

Shannon’s result:
𝑪𝑪𝑩𝑩𝑩𝑩𝑪𝑪=(1-p) bits 
per channel use

Binary Erasure Channel

𝑝𝑝 = 0.2
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟎𝟎 = 1 ; 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 (𝟏𝟏) = 1
𝑻𝑻𝑪𝑪𝑪𝑪𝑻𝑻𝑻𝑻 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑪𝑪 ≤ 10,000

X̂ X



What is the Shannon capacity?

Surprise: the encoder does not need to know which bits are erased!

Encoder Decoder
𝑚𝑚 �𝑚𝑚

Send information in 
non-erased locations

Number of non-erased bits 
≈ 𝟏𝟏𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟏 − 𝐩𝐩
= 𝟏𝟏𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟎𝟎.𝟖𝟖
= 𝟖𝟖,𝟎𝟎𝟎𝟎𝟎𝟎

The decoder knows 
which bits are erased 
(channel output)

Suppose the 
encoder also 
knows which bits 
are erased (genie) 𝑪𝑪𝑩𝑩𝑩𝑩𝑪𝑪 ≤ 𝟎𝟎.𝟖𝟖 bits/ch. use



1) Encoder & Decoder agree 
on a random codebook

Shannon’s random coding argument

Shannon’s prescription: random coding

010101...

100110…

011100…

…

…

110010…

10,000

28,000

IID random coin-flips:  
Bernoulli(1/2) entries

Codebook for
channel coding

2) Encoder encodes message
Output the codeword corresponding to
the index

3) Decoder decodes message
Output the index corresponding to the
closest codeword

msg. m

100011…msg. �𝑚𝑚



1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

Why does it work?

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

10,000

28,000

IID random 
B(1/2) entries

Codebook for
channel coding

1110000111001110...
input to the channel

Channel will erase 
20% of bits

1110000111001110...
∗∗∗∗∗∗

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

8,000 2,000

28,000• Successful decoding if the non-
erased string is unique

• 8,000 bits will induce unique 
match if (random) codebook size 
is ≤28,000 w.h.p.

er
as

ed
 lo

ca
tio

ns

Say sending
𝑚𝑚 = 3



Source Coding Dual to the BEC:  BEQ

Source
Encoder

Source
Decoder

mm X̂

Compressed bit-stream
8,000 bits

Want the average 
distortion  to be ≤ 0.2

1    0    1    0    1    0�𝑥𝑥:

1    0    ∗ ∗ 0    1𝑥𝑥:

cost: 0 1 ∞

∗ is like a “don’t care”  symbol 
(e.g., perceptually masked 
symbols).   How can we 
exploit this for compression?

Martinian and Yedidia, 2004

01*1*00110…

𝑋𝑋𝜖𝜖{0,1,∗}10,000

𝒑𝒑 𝟎𝟎 = 𝒑𝒑 𝟏𝟏 = 𝟎𝟎.𝟒𝟒;
𝒑𝒑 ∗ = 𝟎𝟎.𝟐𝟐



Source Coding Dual to the BEC: BEQ

Source
Encoder

Source
Decoder

mmX X̂

Surprise: the decoder does not need to know which symbols are ‘∗’!

Send the non-* bits:
Number of non ‘∗’ symbols to send
≈ 𝟏𝟏𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟏𝟏 − 𝐩𝐩(∗)
= 𝟏𝟏𝟎𝟎,𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟎𝟎.𝟖𝟖 = 𝟖𝟖,𝟎𝟎𝟎𝟎𝟎𝟎

Suppose the  decoder
also knows which are 
the ‘∗’ symbols (genie)

The encoder knows 
which symbols are ‘ ∗ ′
(source attribute)

01*1*00110…

01100110…

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵(0.2) ≥ 0.8 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/𝑏𝑏𝑠𝑠𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠



Source Coding Dual to the BEC: BEQ

String Length 
10,000

Source
Encoder

Source
Decoder

mmX X̂
Compressed bitstream

8,000 bits
Want the average 
distortion
to be ≤ 0.2

How would you do it?

Use channel decoder 
as source encoder

Use channel encoder
as source decoder

Channel
Encoder

Channel 
Decoder

𝑚𝑚 �𝑚𝑚

𝒑𝒑 𝟎𝟎 = 𝒑𝒑 𝟏𝟏 = 𝟎𝟎.𝟒𝟒;
𝒑𝒑 ∗ = 𝟎𝟎.𝟐𝟐



1) Encoder & Decoder agree 
on a random codebook

Shannon’s random coding argument

Shannon’s prescription: random coding

010101...

100110…

011100…

…

…

110010…

10,000

28,000

IID random coin-flips:  
Bernoulli(1/2) entries

Codebook

2) Encoder encodes message
Output the codeword corresponding to
the index
Output the index corresponding to the
closest codeword

3) Decoder decodes message
Output the index corresponding to the
closest codeword
Output the codeword corresponding to
the index

msg. m

100011…msg. �𝑚𝑚



1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

Why does it work?
10,000

28,000

IID random 
B(1/2) entries

Codebook for
source coding

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…

8,000 2,000

28,000Index of the codeword that 
exactly matches the non-* 
part of input string lo

ca
tio

ns
 w

ith
 ∗

111000011100∗∗∗∗∗∗

Bitstream of
length 10,000• Successful 

encoding if the 
“non-*” part of 
input string is 
present in the 
codebook

• 8,000 bits will 
induce an exact 
match if random 
codebook size is 
≥ 28,000 w.h.p.

1001000010101000...

1111011111101110…

1110000111001110…

…

…

1101011001010010…



Knowledge of the erasure pattern

Encoder DecoderChannel
𝑚𝑚 �𝑚𝑚

The decoder knows
the erasure pattern

The encoder does 
not need to know

𝑥𝑥 �𝑥𝑥

Channel coding

Encoder Decoder
�𝑥𝑥

The decoder does not 
need to know the 
don’t care locations

The encoder knows
the don’t care 
locations

𝑚𝑚 𝑥𝑥
Source coding



Optimal
Quantizer

X X̂

Channel

X X̂

REVERSAL  OF  ORDER

Duality between source and channel coding

Given a source coding problem with source distribution q(𝑥𝑥), 
optimal quantizer p∗( �𝑥𝑥|𝑥𝑥), distortion measure 𝑑𝑑 𝑥𝑥, �𝑥𝑥 and 
distortion constraint D

There is a dual channel coding problem with channel p∗(𝑥𝑥| �𝑥𝑥)
cost measure 𝑤𝑤( �𝑥𝑥) and cost constraint W such that

𝑹𝑹(𝑫𝑫) = 𝑪𝑪(𝑾𝑾)

q(𝑥𝑥)

p∗( �𝑥𝑥|𝑥𝑥)

p∗( �𝑥𝑥)

p∗(𝑥𝑥| �𝑥𝑥)

q(𝑥𝑥) p∗( �𝑥𝑥)

𝑤𝑤( �𝑥𝑥)=𝑐𝑐1𝐷𝐷(𝑝𝑝∗(𝑥𝑥| �𝑥𝑥) ||𝑞𝑞 𝑥𝑥 ) + 𝜃𝜃 ).ˆ()ˆ*( XwEW xp=

Pradhan, Chou and R, 2003



For any given source coding problem, there is a dual channel 
coding problem such that:

• both problems induce the same optimal joint distribution

• the optimal encoder for one is functionally identical to the 
optimal decoder for the other

• an appropriate channel-cost measure is associated

Key takeaway

Source coding
distortion measure is as important as the source distribution

Channel coding
channel cost measure is as important as the channel conditional distribution

Interpretation of functional duality



Duality between 
source coding with side information

and 
channel coding with side information

27



Source coding with side information (SCSI):

Encoder DecoderX

S

X
^

• (Only) decoder  has access to side-information S

•Studied by Slepian-Wolf ‘73, Wyner-Ziv ’76, Berger ’77

•Applications: sensor networks (IoT), digital upgrade, 
secure compression.

•No performance loss in some important cases

X

S
)|( SXHR ≥

Jack Keil Wolf



Encoder
Y

S

X

• (Only) encoder has access to ``interfering” side-information S

• Studied by Gelfand-Pinsker ‘81, Costa ‘83,  Heegard-El Gamal ’85

• Applications: data hiding, watermarking, precoding for known 
interference, writing on dirty paper, MIMO broadcast.

• No performance loss in some important cases

Channel Decoder

Channel coding with side information (CCSI):

m m̂



Encoder
Y

S

• Encoder (only) has access to ``interfering” side-information S

• Studied by Gelfand-Pinsker ‘81, Costa ‘83,  Heegard-El Gamal ’85

• Applications: data hiding, watermarking, precoding for known 
interference, writing on dirty paper, MIMO broadcast.

• No performance loss in some important cases

Decoder

Channel coding with side information (CCSI):

m m̂

Z Y=e+S+Z

e + +X



Encoder Decoder
bitsbits

Quantized
Source

Duality between source coding 
& channel coding with side information

source coding with side information (SCSI)

Pradhan, Chou and R, 2003

Source

Side-information

DecoderEncoder
bitsbits

Channel 
input

Channel 
output

Side-information

channel coding with side information (CCSI)

Internet of Things (IoT), video streaming, 
multiple description coding, secure compression

Watermarking, data hiding, 
multi-antenna wireless broadcast



Chapter 2
Cryptography 

• Compressing 
encrypted data

Mark Johnson Prakash Ishwar

Vinod Prabhakaran



Cryptography – 1949

• Foundations of modern cryptography
• All theoretically unbreakable ciphers must have the properties of one-time pad



Compress Encrypt

“Correct” order

Cryptograhic
Key

K

Source
X

H(X) bits H(X) bits

CompressEncrypt

Wrong order?

Source
X Y H(X) bits

Cryptograhic
Key

K Johnson & R, 2003

Compressing Encrypted Data



Compressed 
Encrypted Image

5,000 bits

Encrypted ImageOriginal Image

10,000 bits

Final 
Reconstructed 

Image
Decoding Compressed 

Image

Example



10,000 bits 5,000 bits?

37

Original Image Encrypted Image Decoded Image

Source
Reconstructed 
Source

Encrypter Encoder Decoder Decrypter

Joint Decoder/Decrypter

𝑿𝑿
Key

𝑲𝑲
𝑲𝑲

𝒀𝒀 𝑼𝑼
Syndrome

Key

Key Insight!

�𝑿𝑿

• Y = X + K where X is independent of K
• Slepian-Wolf theorem:

can send X at rate H(Y|K) = H(X)



 X is uniformly chosen from {[000], [001], [010], [100]}
 K is a length-3 random key (equally likely in {0,1}3)
 Correlation: Hamming distance between Y and K at most 1 
 Example: when K=[0 1 0],    Y => [0 1 0], [0 1 1], [0 0 0], [1 1 0]

Y=X+K

K

XX =ˆ

Case 1

Encoder Decoder

000
001
010
100

00 
01 
10 
11 

=Y+K
• Encoder computes  X=Y+K (mod 2) 
• Encoder represents X using 2 bits
• Decoder outputs  X (mod 2)

SCSI: binary example of noiseless compression
(Slepian-Wolf ’73)



• Transmission at  2 bits/sample
• Encoder => send index of the coset containing X.
• Decoder => find a codeword in given coset closest to K

Example:  Y=010 (K=110) => Encoder sends message 10

111
110
101
011

000
001
010
100

0 0 0 
1 1 1

Coset-1

Y

K
Y

Decoder

K

XX =ˆ

Case 2

Encoder









111
000Coset-1

(00)









110
001Coset-4

(11)







101
010Coset-3

(10)









011
100Coset-2

(01)

(Slepian-Wolf ’73)



Geometric illustration
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x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Signal to decoder

Encoder Decoder𝑚𝑚 𝑚𝑚

𝑌𝑌 = 𝑋𝑋 + 𝐾𝐾

𝑌𝑌 (encrypted)

𝑌𝑌

𝐾𝐾

�𝑋𝑋
𝑋𝑋 (unencrypted &

compressible)



Example: geometric illustration

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Side information
X

Encoder DecoderX X̂𝑚𝑚 𝑚𝑚

𝐾𝐾

𝐾𝐾



Practical Code Constructions

• Use a linear transformation (hash/bin)
• Design cosets to have maximal spacing

– State of the art linear codes (LDPC codes)

• Distributed Source Coding Using Syndromes (DISCUS)*

Bin 1 Bin 2 Bin 3
Source 

Codewords

*Pradhan & R, ‘03

Presenter
Presentation Notes
--------------------------------------------------------- The SW theorem is proved in Cover and Thomas by using random binning arguments.  That is, dividing the input codespace into 2^nR bins and sending only a codewords bin index.   But Csiszar showed that the SW could be achieved using linear codes.  Earlier I mentioned that X and Y can be seen as being related via a test channel.�Combining these two facts suggests using linear channel codes to perform the random binning.  For notation, we’ll say a (n,k) channel code has generator G and parity check H.  Now, if we use a channel code powerful enough for the test channel between X and Y, we can than find a codewords bin index by finding it’s syndrome with respect to the codes parity check matrix.



Chapter 3
Sampling theory

• Sample and compute 
efficient sampling (and 
connections to learning)

Xiao Li

Orhan Ocal



Sampling theorem

Shannon
1949

Nyquist
1928

Whittaker
1915

Kotelnikov
1933

…

linear interpolation!

pointwise sampling!



Aliasing phenomenon

Input signal

Time domain Frequency domain

Bandwidth of 1 Hz

Sampling at rate 1/2
Spectrum is aliased!

Sampling at rate 1 No aliasing 
– can recovery by linear filtering



But what if the spectrum is sparsely occupied?

Frequency domain

Henry Landau, 1967
– Know the frequency support
– Sample at rate “occupied bandwidth” focc (Landau rate)

When you do not know the support?
• Feng and Bresler, 1996
• Lu and Do, 2008
• Mishali, Eldar, Dounaevsky and Shoshan, 2011
• Lim and Franceschetti, 2017



Filter bank approach
Input in frequency domain

Know the frequency support, filter and sample
no aliasing
thanks to filtering

Filtering

Sampling

? ? ?

?

?

?

?

?

?

?

?

?

?

?

?

Sampling spectrum-blind?

Requires 2focc. Can we design a constructive scheme? Lu and Do, 2008



1 1 1 1 1

1 2 3 4 5 -20
4

100 grams 
each

• One unknown thief

• Steals unknown but 
fixed amount from 
each coin

• What is min. no. of 
weighings needed ?

• 2 are enough!

Ratio-test identifies the location

Differential weight

-5 y1

y2

y2

y1

Puzzle: Gold thief



Key Ideas:
1. Randomly group the treasurers.
2. If there is a single thief problem

 Ratio test 
 Iterate.

1 2 3 4 5 6 7 8 9 1210 11

1
bin-3

bin-2

bin-4

bin-1
2

34

5

6

7

8

9

10

1112

singleton

multitonsingleton

Questions:
1. How many groups needed? 
2. How to form groups? 
3. How to identify if a group has a 

single thief?

4-thieves among 12-treasurers



Remarks
• Computational cost O(focc) independent of bandwidth
• Requires mild assumptions (genericity)
• Can be made robust to sampling noise

Main result

Ocal, Li & R, 2016 50



Key insight for spectrum-blind sampling

• To reduce sampling rate, subsample judiciously
• Filter bank derived from capacity-achieving codes 

for the Binary Erasure Channel (BEC) (LDPC codes)
• Introduces aliasing (structured noise)
• Non-linear recovery instead of linear interpolation

subsampling

“judicious” filtering/subsampling

aliasing

“good” aliasing



• Filter and then sample at rate B

Filter bank for sampling

• Sample the signal at rate B

H(f)

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Filter bank for sampling

Aggregate sampling rate: 𝑁𝑁 𝑓𝑓𝑀𝑀
𝑁𝑁

= 𝑓𝑓𝑀𝑀 = Nyquist rate for 𝑥𝑥(𝑏𝑏)

𝐵𝐵 samples/sec

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



‘Sparse-graph-coded’ filter bank

where

m filters
N bands

matrix

𝐵𝐵 samples/sec

Presenter
Presentation Notes
As can be seen, if I have too many ones in the rows of the matrix then they mix too muchif I have too many zeros then I cannot capture the signalI need to design carefully to get enough and not too much



Example — sparse graph underlying the measurements

Sparse bipartite graph

A

C

D

B

E

F

bands
channels

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Example — sparse graph underlying the measurements

visual cleaning for presentation: 
remove edges that connect to non-active 
bands

A

C

D

B

E

F

bands channels

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Example — peeling

Measurement classification

zero-ton: no signal

single-ton: no aliasing

multi-ton: aliasing

A

C

D

B

E

F

bands channels

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Example — peeling

Assume a mechanism:
identifies which channels have 
no aliasing (here B and F) and 
maps them to which bands they 
came from (here 1 and 4 resp.)

Measurement classification

zero-ton: no signal

single-ton: no aliasing

multi-ton: aliasing

bands channels

A

C

D

B

E

F

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Example — peeling

mechanism:

identifies which channels 
have no aliasing and maps 
them to which bands they 
came from

output:
channel B: (red, index = 1)
channel F: (blue, index = 4)

A

C

D

B

E

F

bands channels

Presenter
Presentation Notes
What is our approachWhy is it different from prior work



Example — peeling
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Example — peeling

mechanism:

identifies which channels 
have no aliasing and maps 
them to which bands they 
came from

output:
channel D: (green, index = 8)
channel E: (cyan, index = 5)
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Example — peeling

mechanism:

identifies which channels 
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Example — peeling

mechanism:

identifies which channels 
have no aliasing and maps 
them to which bands they 
came from

signal is completely recovered!

A

C

D

B

E

F

bands channels

Presenter
Presentation Notes
Does this peeling always work. No. But you can design. Coding theory. Design of sparse graph codes for erasure channels which are known to be capacity approaching.



Construction of the sparse-graph code

• Designed through capacity-
approaching sparse-graph codes

• Connect each band to channels at 
random according to a carefully 
chosen degree distribution.

• Asymptotically, number of channels
is (1 + 𝜖𝜖) times the number of 
active bands

bands channels

Degree distribution for 𝝐𝝐 = 𝟏𝟏/𝟐𝟐𝟎𝟎

degree

fr
ac

tio
n 

of
 b

an
ds
𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑗𝑗 ∝ 1

𝑗𝑗−1
for j=2,3,…D

Presenter
Presentation Notes
YOu should take care of designing the filter bank, this design is sparse graph codesTHen you will need minimum number of channelsAnd it will be O(K) will give f_LYou need K channel son the right



Realizing the mechanism

Identify which channels have no aliasing and map them to bands

0 fM 0 fM

magnitude

phase
phase stairs

identifies dark blue band as a singleton

same magnitude response
‘stairs’ phase response

Presenter
Presentation Notes
As can be seen, if I have too many ones in the rows of the matrix then they mix too muchif I have too many zeros then I cannot capture the signalI need to design carefully to get enough and not too much



Numerical experiment
Output from two sample channels

true signal     estimates

Input spectrum and time domain signal

Presenter
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Interesting connection

• Minimum-rate spectrum-blind sampling
• Coding theory and sampling theory

– Capacity-approaching codes for erasure channels 
– Filter banks that approach Landau rate for 

sampling

Sampling theoryCoding theory

Sparse-graph coded filter bank
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CSL Lecture, UIUC

“Peeling-based”
turbo engine

Divide

Sparse-Graph  Code

“Solve-if-trivial”
sub-engineConcur

+
+

+

+



Broad scope of 
applications

Sparse-graph 
codes

Sparse 
Spectrum 

(DFT/WHT)

Pawar, R., 2013 
Li, Pawar, R., 2014

Fast 
neighbor 

discovery for 
IoT (group 

testing)

Lee, Pedarsani, R., 2015

Sub-Nyquist 
sampling 

theory

Ocal, Li, R., 2016

Compressed 
sensing

Li, Pawar, R., 2014

Sparse 
mixed linear
regression

Yin, Pedarsani, Chen, R., 2016

Compressive 
phase 

retrieval

Pedarsani, Lee, R., 2014



Conclusion: Shannon’s incredible legacy

• A mathematical theory of 
communication

• Channel capacity
• Source coding
• Channel coding
• Cryptography
• Sampling theory
• …

(1916-2001)

His legacy will last many 
more centuries!
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Thank you!


	Shannon-inspired research tales �on Duality, Encryption, Sampling and Learning
	Shannon’s incredible legacy
	And many more…
	Story: Shannon meets Einstein
	Outline
	Chapter 1
	Shannon’s celebrated 1948 paper
	Source coding
	Rate-distortion theory - 1948
	Channel coding
	Shannon’s breakthrough
	Shannon (1959)
	Shannon (1959)
	Functional duality
	Duality example: Channel coding
	What is the Shannon capacity?
	Shannon’s prescription: random coding
	Why does it work?
	Source Coding Dual to the BEC:  BEQ
	Source Coding Dual to the BEC: BEQ
	Source Coding Dual to the BEC: BEQ
	Shannon’s prescription: random coding
	Why does it work?
	Knowledge of the erasure pattern
	Duality between source and channel coding
	Interpretation of functional duality
	Duality between �source coding with side information�and �channel coding with side information
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Duality between source coding �& channel coding with side information
	Chapter 2
	Cryptography – 1949
	Compressing Encrypted Data�
	Slide Number 36
	Slide Number 37
	SCSI: binary example of noiseless compression
	Slide Number 39
	Geometric illustration
	Example: geometric illustration
	Practical Code Constructions
	Chapter 3
	Sampling theorem
	Aliasing phenomenon
	But what if the spectrum is sparsely occupied?
	Filter bank approach
	Puzzle: Gold thief
	4-thieves among 12-treasurers
	Main result
	Key insight for spectrum-blind sampling
	Filter bank for sampling
	Filter bank for sampling
	‘Sparse-graph-coded’ filter bank
	Example — sparse graph underlying the measurements
	Example — sparse graph underlying the measurements
	Example — peeling
	Example — peeling
	Example — peeling
	Example — peeling
	Example — peeling
	Example — peeling
	Example — peeling
	Example — peeling
	Construction of the sparse-graph code
	Realizing the mechanism
	Numerical experiment
	Interesting connection
	Slide Number 69
	Broad scope of applications
	Conclusion: Shannon’s incredible legacy
	Slide Number 72

