Polarization and Source Coding

Erdal Arikan

Electrical-Electronics Engineering Department,
Bilkent University, Ankara, Turkey

UCSD Shannon Memorial Lecture
11 June 2021
Goals

- Present basic ideas of polarization in a general framework
- Discuss potential applications

Scope limited to discrete memoryless sources
Transforms and entropy

Consider a linear transform over a field \mathbb{F}

$$U_k = \sum_{i=0}^{N} g_{k,i} X_i, \quad k = 0, 1, \ldots, N - 1$$

where $\{X_k\}$ are source variables and $\{g_{k,i}\}$ are transform coefficients.

$\{X_k\}$ are produced by a discrete memoryless source X with entropy $H(X) < \infty$.

Our primary goal is to track the evolution of entropy from input to output of such transforms.

We will impose certain constraints on the transform to make the analysis tractable.
Entropy conservation and polarization

- We will assume that the transform is invertible so that there is entropy conservation
 \[H(U_0, \ldots, U_{N-1}) = H(X_0, \ldots, X_{N-1}) = NH(X) \]

- By the chain rule, the output entropy can be written as
 \[H(U_1, \ldots, U_{N-1}) = \sum_{i=0}^{N-1} H(U_i|U_0, \ldots, U_{i-1}) \]

- We speak of entropy polarization if some of the terms \(H(U_i|U_0, \ldots, U_{i-1}) \) approach zero as \(n \) becomes large.

- Polarization enables compression
Butterfly transforms

- Restrict attention to butterfly transforms for low-complexity of implementation and analytical tractability
- Output read in bit-reversed order
- Examples include Discrete Fourier, Walsh-Hadamard, and Polar transforms
Basic butterfly operation

- Assume that each butterfly is invertible:

\[\alpha \delta - \beta \gamma \neq 0. \]

- There may be multiple types of butterflies in the overall signal flow graph but there is a tree structure

\[
U_0 = \alpha X_0 + \beta X_1 \\
U_1 = \gamma X_0 + \delta X_1
\]
Entropy relations in the butterfly operation

\(X_0, X_1\) are i.i.d. copies of \(X\).

- **Conservation**
 \[H(U_0, U_1) = H(X_0, X_1) = 2H(X)\]

- **Polarization**
 \[H(U_0) \geq H(X) \geq H(U_1|U_0)\]

with equality iff \(U_0\) and \(U_1\) are independent
Notation

From two copies of H we obtain a pair (H_0, H_1) such that

$$H_0 + H_1 = 2H, \quad H_0 \geq H \geq H_1$$

\[
\begin{align*}
H &= H(X) \\
H_0 &= H(U_0) \\
H_1 &= H(U_1|U_0)
\end{align*}
\]
Entropy evolution
Entropy evolution tree

The same butterfly at each node, but possibly different butterflies at different nodes
Random walk down the entropy tree

Select a path by a sequence B_1, B_2, \ldots of coin flips

![Entropy Tree Diagram]
Random walk down the entropy tree

(B_1, B_2, B_3) selects the path to the leaf $H_{B_1B_2B_3}$
Define a sequence \(\{ S_n; n \geq 0 \} \) of entropy random variables

\[
S_0 = H, \quad S_1 = H_{B_1}, \quad S_2 = H_{B_1B_2}, \quad \cdots \\
S_n = H_{B_1B_2\cdots B_n}, \quad n \geq 1
\]

Claim: \(\{ S_n; n \geq 0 \} \) is a martingale w.r.t. \(\{ B_n \} \), i.e.,

\[
\mathbb{E}[S_{n+1} \mid B_1, \ldots, B_n] = S_n, \quad n \geq 0.
\]

Proof.

\[
\mathbb{E}[S_{n+1} \mid B_1, \ldots, B_n] = \frac{1}{2}H_{B_1\cdots B_n0} + \frac{1}{2}H_{B_1\cdots B_n1} = H_{B_1\cdots B_n} = S_n.
\]
Martingale convergence

- The entropy martingale \(\{S_n; n \geq 0\} \) converges a.s.

\[S_n \to S_\infty \quad \text{with} \quad \mathbb{E}[S_\infty] \leq S_0 \]

- \(\{S_n; n \geq 0\} \) converges in \(\mathcal{L}^1 \), i.e.,

\[
\lim_{n \to \infty} \mathbb{E}[|S_n - S_\infty|] = 0,
\]

iff it is uniformly integrable, i.e.,

\[
\lim_{M \to \infty} \sup_n \sum_{s \geq M} p_{S_n}(s) s = 0.
\]

(Contribution of the tail to the expectation must die off.)
Uniform integrability examples

- Example 1. If $S_n < K$ for all n, then $\{S_n\}$ is u.i. and converges in \mathcal{L}^1

- Example 2. Consider the sequence of random variables

$$S_n = \begin{cases} n & \text{with prob. } 1/n \\ 0 & \text{with prob. } 1 - 1/n \end{cases}$$

This sequence is not u.i.; it converges a.s.

$$S_n \to S_\infty = 0, \ a.s.,$$

but not in \mathcal{L}^1

$$\mathbb{E}[S_n] = 1 \neq \mathbb{E}[S_\infty] = 0.$$
We will consider a number of examples.

In all examples, the source X will be a memoryless Bernoulli source,

$$X = \begin{cases} 1, & \text{with prob. } p \\ 0, & \text{with prob. } 1 - p \end{cases}$$

Entropy $H(X) = \mathcal{H}(p) = -p \log p - (1 - p) \log(1 - p)$
Identity transform

- $S_n = S_0 = \mathcal{H}(p)$ for all $n \geq 0$.
- $\{S_n\}$ converges a.s. and in \mathcal{L}^1.
- Shows that martingale convergence does not imply polarization.

$$U_0 = X_0, \quad U_1 = X_1$$
Cantor mapping

- There exists a butterfly transform of length \(N = 2^n \) with

\[
U_0 = 2^{-1} X_0 + 2^{-2} X_1 + 2^{-3} X_2 + \cdots + 2^{-(N-1)} X_{N-1}
\]

- Clearly, \(\{X_k\} \) can be recovered from just \(U_0 \), so the compression ratio is \(2^n \), and

\[
S_n = \begin{cases}
2^n \mathcal{H}(p) & \text{with prob. } 2^{-n} \\
0 & \text{with prob. } 1 - 2^{-n}
\end{cases}
\]

- Hence, \(S_n \to S_\infty = 0 \) a.s., but \(\mathbb{E}[S_n] = \mathcal{H}(p) \neq \mathbb{E}[S_\infty] = 0 \) (no \(L^1 \) convergence).

- Shannon\(^1\) discussed this mapping as a compression scheme.

Polar transform over \mathbb{F}_2

- The entropy martingale is bounded: $0 \leq S_n \leq 1$
- $S_n \to S_\infty$ a.s. and in L^1 with

 $$S_\infty = \begin{cases}
 1 & \text{with prob. } \mathcal{H}(p) \\
 0 & \text{with prob. } 1 - \mathcal{H}(p)
 \end{cases}$$
- Achieves the Shannon limit for source coding with practical encoding/decoding algorithms

![Diagram](attachment:image.png)

$$U_0 = X_0 + X_1 \mod 2,$$
$$U_1 = X_1$$
Polar source coding over \mathbb{F}_2

- Given source N-tuple (x_0, \ldots, x_{N-1}), compute its polar transform (u_0, \ldots, u_{N-1})

- For source coding at rate K/N, keep the transform terms u_i such that $H(U_i|U_0, \ldots, U_{i-1})$ is in the top K

- Achieves Shannon’s entropy bound on coding rate with a probability of error $\approx 2^{-\sqrt{N}}$ and encoding/decoding algorithms of complexity $\mathcal{O}(N \log N)$.
Polar transform over \mathbb{R}

- $S_n \to S_\infty$ a.s. is still guaranteed. \mathcal{L}^1 convergence open.

- S_n takes values over $H(U_i|U_0, \ldots, U_{i-1})$ where U_i is a sum of at most $N = 2^n$ source variables, so

$$S_n \leq H(\text{Binom}(N, p)) \approx \frac{1}{2} \log(2\pi eNp(1 - p)) \approx \frac{n}{2}$$

- Therefore, compression ratio cannot be larger than

$$\frac{H(\text{Binom}(N, p))}{\mathcal{H}(p)} \approx \frac{n/2}{\mathcal{H}(p)}$$

- Open problems: Is this upper bound asymptotically tight? Are there practical decoding methods?
Walsh-Hadamard transform (WHT) over \mathbb{R}

- $S_n \rightarrow S_\infty$ a.s.
- Open: \mathcal{L}^1 convergence?
- Encouraging news: Mert Pilanci\(^1\) applied this transform successfully to compressed sensing (using “basis pursuit denoising” for recovery)

\[\alpha = \frac{1}{\sqrt{2}} \]
\[\gamma = \frac{1}{\sqrt{2}} \]
\[\beta = \frac{1}{\sqrt{2}} \]
\[\delta = -\frac{1}{\sqrt{2}} \]

\[U_0 = \frac{1}{\sqrt{2}}(X_0 + X_1), \]
\[U_1 = \frac{1}{\sqrt{2}}(X_0 - X_1) \]

\(^1\) M. Pilanci, Uncertain Linear Equations, M.S. Thesis, Bilkent University, 2010.
Remarks on WHT over \mathbb{R}

- WHT is orthonormal and conserves energy
- Each coordinate in the transform domain potentially carries $\approx \frac{n}{2}$ bits of information
- Recovery is limited by numerical precision problems since energy per coordinate is bounded
- Similar remarks apply to any orthonormal or unitary transform such as DFT
Possible remedy for transforms over \mathbb{R}

- Guido Montorsi1 proposed using modular arithmetic over \mathbb{R}, such as
 \[
 u_k = \sum_{i=0}^{N-1} g_{k,i} x_i \mod (M),
 \]
 to avoid energy growth and design low-complexity algorithms for recovering $\{x_k\}$ from a high-entropy subset of $\{u_k\}$.

- Modulus M should be small enough to provide sufficient noise margin.

- The transform viewed from \mathbb{R} is now non-linear, in accordance with Shannon’s recipe2

- In some way, it is reminiscent of lattice coding

Concluding remarks

- Shannon’s joint source-channel coding theorem implies that, N samples of a discrete source X can be carried reliably using K-dimensions in a transform domain only if

$$\frac{N}{K} < \frac{C}{H(X)}$$

where C is the capacity per dimension (carrier).

- Polarization solves this problem when the transform is over a finite field.

- For real and complex fields, the main practical problem is finding efficient recovery methods.

- Such methods may prove useful in high-order modulation schemes over \mathbb{R} or \mathbb{C}, where $K \ll N$.
Thank you!
After the presentation, I realized that the entropy martingale for the WHT has been studied in full detail in the PhD thesis:

In particular, this thesis shows that the entropy martingale for the WHT over integers does not converge in \mathcal{L}^1, settling some of the open problems cited in the presentation.