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Fortunately, not al | of the data is being used
Afhot, ¢ warmo or fcold, o meaning hot bits (data
DRAM or MRAM (t ygpece sosf memaroy) t o all ow for fast
frequently accessed bpietrsf)oraraesdst tasmoddirdi e a( S )h a
stored in an archival SSD.

For cadbl ed fiwarm datad Toshiba | ast year develo
technology called Through Silicooautvpuat (d&tVa , r avth
Gbps. That s higher than any other NAND fl ash n
approximately 50 percent with | ow voltage suppl.y
Toshiba has also developed its own vecrasliloend offo |
technologydés fAbit column stackabled design. Bi C¢

generation devicd efvedt wredd ,t e tTrLiCpl ¢ echnol ogy,
three bits per cell

Jeff Ohshima, member of the Semiconductor and Stor-
age Products executive team at Toshiba Corporation.

As i fstsetled ddri ve devel opment wasndét fast and furious enoudéat aOh@hadnaup
el Cel | or QLC, which is capable of storing four bits peBSBeddiv@QLLCi z
near future, resulting in capacities of up to 128 terabytes by 2018.

But even with bigger, denser drives, Ohshima notes thatead |i noft hteh ec cenx
ade to store the aforementioned 3.7 zettabytes of data exfppeet wdt ho25a
DVDs (thatés billion with a 6bd), add 2.7 identical war ebotusstsorainrdg mma
per cell, and in an extra dimension
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capabilities, o0 said Siegel, -cwhra ewdri lon «mo dmanidgy o6t rreitct hlinm sqautrelds a, tearom @odni f bye ft ohree
in order to help prevent, detect and fix errors that midihti rog cruagw whams
computing system architecture and sparking the invention of entirely
But what if bits and ce s and disks and drives werendtn nchenbdonltegl wane

[
way that might change the world of computing as we know it?

The DNA Domai n
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code

But that also means, of course, t hat b+tamamngwcadea cain beseamacltti ats i i
storage, and for human society.

DNA, first of all, is extremely dense: you can store oneldirtabper Mhs
archival computing systems need to be kept in subzero tempeathd udreesds
thousands of years | ater, even after being dug up out of the Gobi Des
|l magine once again that coffee cup on your desk. DNA is stoedemere ahtes
million times in about .03 ounces of that coffee, or the negsmriredl!l ¢hi s
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AThis is what makes-abbAi aalf odant @af stsapage, O an
el ectrical engineer at Spawar Systems Cent e

ACoding -BasedMNAdtorage (the Bieber anal ogy Usi
DNA, you could store 6.4 gigabytes of i nf o cel
about 100 hours of music. In one human cel ||

AAll the worldds data, o added Gabrys, fcoul he
Eitan Yaakobi , an assistant prof esislosrr aoefl cl ech
Technol ogy and an affiliate of CMRR, ackno m
fiction at this point.o But, he added, fil r f
progress in this direction and Iliterally t

com_blne\efforts from researchers from all Ryan Gabrys, electrical engineer at SpaWar g f
coding.o Systems Center in San Diego.

And yet, as Gabrys pointed out, Afeverythingds complicated svusbthi tOaNAdoon
del ebaoead errors (hence Gabfywygdewodilbntocodespl apmpdether procesas e&so rceoqnw
proprietary and eftipEosiwvkei sectbneVvegybe a consideration weoOre talking ¢
about the only thing thatds guaranteed in the wild wo4lddtadfl ed avteanogti ers
come six or seven years from now.

Media Contacts  : Tiffany Fox & (858) 246 -0353 & tfox@ucsd.edu °

Related Links: Non - Volatile Memories Workshop 2016



mailto:tfox@ucsd.edu
http://nvmw.ucsd.edu/2016/

Letter from the Director So | ong Mat

Thi s is the second newsletter

Center for Memory and Recordingf

presentation and discussi on, t h e f
t he CMRR research intewolatialke
research that complements our s

lresearch. The wodadidkr omemoony i (
= by t'H&nn7fual-VoNoart i | e Memori es Wo
[ ywas held o8, Ma0len &nd was organi V. M S
~fand Paul HhiSi evpelkshop providesF0r PR Y

st_anding researevmlcartistcel_irrdems_n had a compani on
nning for the next Waworfk :1itad pal most everyday a
eement to form the new part‘rj“ngE grf Jnhee kdnaey Sled
. . . % y w
versity of I__orraln, Unlverswasafixtureint
or r n France This agreement foriunfortunately, s hh d
A) i is a flaboratory without wal cancer just baft éldm
the Centre National de | a RecheTikihe definitely miss he
an t he exchaadpe @afndf asd wldteyn,t sp dsett ween 1 aps ana prc
or it

ies for coll aborative research.

We have new affiliated faculty at CMRR including F
NanoEngineerin®rbépasioment u works on materials and arc
solsitat e actuati on; nanomaterials synthesis and reactio
design. Prof. Vazquez Menabs research focus is on the
devices for photovoltaics,dibmemssinesn ailg, h yermbdd | @& s amaite d¢
Professor Eitan Yaakobi of the Computer Science Depart
member of CMRR.

I have to close on a sad not e, botrihoffe@ers ome Aasmnd Beh &
riginal four CMRR Endowed Chairs, passed away March
MRR and it wouldnét be the institution it is today wi
irst got to know Ami when | wast -goadoantd myullenst wpahki
he |

ast onelfjuwaslasthgear .to be know and work with Ar

PhD Students Near Summer |l nt er ns|

FL Benjamin afll | i . )
Prof. Fra : . ki Redlert Toll &pay Pandit Bing Fan
InterSeagat ¢ Nt eCry mer I nt erSmnai s

Bing Fan Richard Chaiohini N Sidi Fu ,
- ichard Choi Tan D.
Prof. PawlroH.. Eric Prudfl.erBroi Prof. Vi aInR){
Siegel Lomaki n I nt e Bro sadt h InterWD at I nt erGNBX La



Research Hicghhded hte. s

Elucidating the PhasegTlTiDraintsli ioatmaadmn oat otf hd i Nar
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Due to the demand for high energy density batteries for ,mavbiviod tealgec tarndondiec

especiallyihasobeiengh8avily pursued i n,TdOe,6eMO)yearsiewrdthssanespéetrjokbi ||
relatively |l ow capacity and high voltagei ocno mepraodeed, tgor atphhel tfea s(dl 7850 Bvbse K37 pa:|
Neverthel ess, the same wundesirable properties that contriPaexampl el,ow heen eh
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to be an insulator, with experimentally reported band ghemotypseaasyabeelwe
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measur ementrsaywsphgt Xel ectron spectroscopy (XPS), at the same ys taantde sc oonfp ocsh «
uni gue application of the SPM methods presented here isodqmeval eablied&eyamadr
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LTO Surface Chemistry

To further understand the LTO phase transition and the eSS mbduthiicnmsofcystefdad
states of charge dreisgcursehe4ls presgpH awdsloyn. scans of the Cls, O1ls, and Ti2p r
corresponds versypeveK |*§iftnoTlitThog 2app welWlpoas di scHalOge, a second peak at 455.9
measur e, i ThTis peak reaches a “Mpxalmumi met me i VEOt®ampmlee Tdi scharged tadheOt‘vﬁ
reduct i*émpoonf ITiithiation. The ®tpeelaat idveec riemtseerss iutpyo no fc htarggeTiand compl etely di
reaction is fully reversible.

The peak in the Ols spectrédiattbBe@9LTOeNactbircespbpdes tbs©harge, a peak at 5
at 1.0 V. This higher binding energy peak results fromntihea ddsfmiqQcih dpP Ql,nsalol
of which originate from tHBEheecompatsi ononf olecd@pasiodizRri. €@#Oeodakss, shown t o
in the sample discharged to 1.0 V, as suggéThedfhygtthe@asti wealobservbhetBése
LTO is excessively championed to form no passivation orc&El A apyaesrssi,v adu e nt
upon initial di scharge (below 1.5 V) to create a relativetyeséenablien, SElthi s
electrolyte would not appear to occur continuously.
Nor engadli ueidomi @b A) , O1ls
$ndi scharged (b ) and the
di scharged 50% (50% D),
charged 50% (50% C),
The combi tAERMoandfXRS described provides a more detail ed unedseer sitmsnidg mtgs onma )
optimize other materials with insulator to metal transhidiobhswbehgapubft scaMo,]

alACS Na@abBQ 4) , 48212

This work has been a collaborative effort between UCSD and OBkRrBydg®©f Nati
Energy Sciences, u n dFeG O-PAOVERr4db 6NFRBQ EDEE2 BE 7 ) .
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