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1. Introduction 
Low-density parity-check (LDPC) codes have been the focus of much research over the 

past decade as a consequence of their near Shannon-limit performance under iterative 

message-passing (MP) decoding [1] . However, the error floor phenomenon has 

hindered the adoption of LDPC codes and iterative decoders in some applications 

requiring very low error rates. Roughly speaking, an error floor is an abrupt change in 

the slope of the error-rate performance curve of an MP decoder in the high SNR region. 

Since many important applications, such as data storage and high-speed digital 

communication, often require extremely low error rates, the study of error floors in 

LDPC codes remains of considerable practical, as well as theoretical, interest. 

LDPC codes are usually represented by a Tanner graph, as shown in Figure 1. Variable 

nodes represent codeword bits and check nodes represent parity-check constraints. The 

degree of a node refers to the number of edges adjacent to it.  An LDPC code has the 

property that the node degrees are small relative to the codeword length. 

 

 

Figure 1. Tanner graph representation of LDPC codes 

Optimal decoding of powerful LDPC codes is impractical, but suboptimal iterative 

message-passing (MP) decoding algorithms, such as the sum-product algorithm (SPA) 
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and the min-sum algorithm (MSA), have been found to offer a useful tradeoff between 

decoder implementation complexity and error-rate performance.   

The iterative decoder alternates between two phases, a “VN-to-CN” phase during which 

VNs send messages to CNs along their adjacent edges, and a “CN-to-VN” phase during 

which CNs send messages to their adjacent VNs.  The message update rules, which we 

will now briefly describe for the SPA, are depicted schematically in Figures 2 and 3, 

respectively.  In the figures, the set of neighboring CNs of VN i is denoted by )(iN , and 

the set of neighboring VNs of CN 
j

is denoted by )( jN . In the initialization step of the 

decoding process, VN i forwards the same message to all of the CNs in )(iN , namely the 

log-likelihood ratio (LLR) ch

iL derived from the corresponding channel output.  In the CN-

to-VN message update phase, CN j  uses the incoming messages and the message 

update rule shown in Figure 2 to compute and forward, to VN i in )( jN , a new “CN-to-

VN” message, ijL  .  VN i  then processes its incoming messages according to the update 

rule shown in Figure 3 and forwards to each adjacent CN an updated “VN-to-CN” 

message, jiL . After a prespecified number of iterations, VN i sums all of the incoming 

LLR messages to produce an estimate of the corresponding code bit i .  Note that all of 

the “CN-to-VN” message updates can be done in parallel, as can all of the “VN-to-CN” 

message updates.  This enables efficient, high-speed software and hardware 

implementations of the decoding algorithm.  

 

 

                  

Figure 2. CN-to-VN message update: Each CN receives log-likelihood ratio (LLR) 

information from all of its neighboring VNs. For each such VN, it generates an updated 

“check-to-variable” message using the inputs from all other neighboring VNs.  
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Figure 3. VN-to-CN message update: Each VN receives log-likelihood ratio (LLR) 

information from all of its neighboring CNs. For each such VN, it generates an updated 

“variable-to-check” message using the inputs from all other neighboring CNs.  

2. Trapping Sets and Error Floors 
Error patterns in the error floor region often correspond to sets of variable nodes that 

lie in subgraphs of the Tanner graph with special combinatorial structure. For the binary 

symmetric channel (BSC) and the AWGN channel, these sets and their induced 

subgraphs have been referred to as near-codewords, trapping sets, or absorbing sets. 

The term “trapping set” is often used generically in reference to such error-prone 

substructures. For example, Figure 4 shows the error floor of the rate-1/2, length-2640 

Margulis code on the AWGN channel. Most SPA decoding failures in the error floor 

region for this code correspond to the two trapping sets shown in Figure 5. (See [4] [5] .)  

 

Figure 4. Error floor of Margulis code of length 2640, observed by Mackay-Postol in [4] 

and Richardson in [5] . 
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Figure 5. Two trapping sets correspond to the  dominant errors in the error floor 
region for the rate-1/2, length-2640 Margulis code. The VNs in the trapping set are 
represented as solid black circles, and the CNs are represented as squares. If the 
variable nodes are set to the value 1, the CNs where parity-checks are not satisfied are 
shown as shaded squares.  

3. New Quantization Rule to Lower Error Floors 
It is known that error floor characteristics also depend on system implementation issues, 

such as the quantization of channel LLR and message values, the decoding algorithm 

formulation, and the number of decoder iterations. In an idealized scenario, where all 

VNs outside the trapping set are assumed to have been correctly decoded, and where 

the VNs in the trapping set satisfy a certain separation assumption, we proved that 

decoders using the SPA and MSA could correct trapping set errors if the maximum 

magnitude of messages passed between nodes is not restricted  [2] [3] .  

However, in practice, the messages must be represented by a limited number of bits. 

Typically, decoder implementations use uniform quantization, which permits fine 

resolution over a limited range (i.e., large values are “clipped”) or coarse resolution over 

larger range (i.e., message values are represented less accurately). If, as our idealized 

analysis suggests, a large range of values needs to be represented, the precision of small 

messages would have to be sacrificed, significantly degrading the error-rate 

performance. To resolve this dilemma, we propose a new quantization method which 

allows fine resolution for small messages and somewhat coarser representation over a 

range of larger messages. This method, which we call (q+1)-bit quasi-uniform 

quantization, is portrayed graphically in Figure 6.  The corresponding quantization table 

for q=3 is shown in Figure 7.  We assume here that the Tanner graph is VN-degree 
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regular, meaning that all variable nodes have the same degree, d ; however, similar 

results and quasi-uniform quantization techniques can be applied to LDPC codes with 

different VN-node degrees. 

 

Figure 6. (q+1)-bit quasi-uniform quantization, where N = 2
q-1
–1, -N+1 ≤ l ≤ N–1, 1 ≤ 

r ≤ N,  is the nominal step size, and d is a quantization parameter within the range  

]1,1( 


d . 
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Figure 7. An example of (3+1)-bit quasi-uniform quantization, where  = 1, d = 3, for 
the positive range of message values. 

4. Numerical Results 
Figure 8 shows SPA performance results for a rate-0.3, length-640, quasi-cyclic LDPC 

code on the AWGN channel, with a maximum of 200 decoder iterations.  We can see 

that the proposed quantization performs even better than floating-point SPA due to its 

faster convergence. Note that the slope of the error rate curve of the (5+1)-bit 

quantized SPA is the same as the LP decoder, which is steeper than the floating-point 

SPA curve. 

In Figure 9, we show results for the rate-0.5, length-2640 Margulis code. In this decoder 

performance comparison, we also considered the “dual quantization” SPA decoding 

technique proposed in [6] . In dual quantization, two uniform quantization rules with 

different step sizes are used in CN-to-VN message update. Specifically, using the 

notation of [6], Qm/f quantization uses a signed fixed-point number with m bits to the 

left of the radix point to represent integer values, and f bits to the right of the radix 

point to represent fractional values. For example, a Q4.2 quantizer has uniform 

quantization step size of 0.25 and a range of [-7.75, 7.75].   

In the figure, we see that the proposed (5+1)-bit quasi-uniform quantizer has the best 

error-floor performance; it even improves upon the 64-bit double-precision floating-

point SPA decoder in low error-rate region as a result of its faster convergence. 
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Extensive computer simulation results, not shown here, show that the error-rate 

performance in the water-fall region can also be improved by using quasi-uniform 

quantization with carefully chosen quantization parameters. 

 

Figure 8. FER results of SPA decoder on the (640,192) QC-LDPC code on AWGNC. The 

uniform quantization step  = 0.25, and d = 1.5 in (5+1)-bit quasi-uniform quantization, 
maximum number of iterations is 200.  
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Figure 9. FER results of approximate-SPA decoder on the Margulis code of length 2640 

on AWGNC. Uniform quantization step  = 0.25, and d = 1.3 in (5+1)-bit quasi-uniform 
quantization, maximum number of iterations is 200. 

5. Summary and Conclusions 
In this research, we have shown that the use of uniform quantization in iterative 

message-passing decoding can be a significant factor in the appearance of error floors in 

LDPC code performance. To address this problem, we have proposed a new quasi-

uniform quantization method that effectively extends the dynamic range of the 

quantized message values. Without modifying the CN-to-VN and VN-to-CN message 

update rules or adding extra stages to standard iterative decoding algorithms, the use of 

quasi-uniform quantization was shown to significantly lower the error floors of two well-

studied LDPC codes. 
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